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Universality and scaling for the breakup of phase synchronization at the onset of chaos
in a periodically driven Rossler oscillator

Sergey P. Kuznetsov and Igor R. Sataev
Institute of Radio-Engineering and Electronics RAS, Saratov Division, Zelenaya 38, Saratov 410019, Russia
(Received 4 May 2001; published 24 September 2001

Universal behavior discovered earlier in two-dimensional noninvertible maps is found numerically in a
periodically driven Ressler system. The critical behavior is associated with the limit of a period-doubling
cascade at the edge of the Arnold tongue, and may be reached by variation of two control parameters. The
corresponding scaling regularities, distinct from those of the Feigenbaum cascade, are demonstrated. Presence
of a critical quasiattractor, an infinite set of stable periodic orbits of quadrupled periods, is outlined. As argued,
this type of critical behavior may occur in a wide class of periodically driven period-doubling systems.

DOI: 10.1103/PhysRevE.64.046214 PACS nun)er05.45.Df, 05.10.Cc

[. INTRODUCTION in the parameter space—the frequency of the external force
is tuned to reach the edge of the synchronization Ztine
Classic synchronization, or mode locking, consists in aedge of the Arnold tongyeln this way we arrive at a critical
natural adjustment of frequencies of periodic self-oscillationgpoint of special kind, which is the subject of our study.
in nonlinear dissipative systems due to their interaction, or Our numerical results indicate that this critical point re-
due to presence of an external periodic force. This phenondates to the universality class introduced earlier in the context
enon was extensively studied in classic theory of oscillator®f two-dimensional noninvertible iterative magthe so-
[1-4]. It is observed in physical, technical, and biological calledC type of criticality) [22—25. At the critical point, the
systems and has numerous and important applicaf®ns forced Rasler system displays all the attributes of the uni-
In modern interpretation, the concept of synchronizationversality class, including scaling regularities associated with
is of much broader meanintsee[5—8]). In particular, it  definite universal constants distinct from those of Feigen-
takes into account a possibility of different combinations ofbaum. One of the intriguing properties of the dynamics at the
dynamical behaviors in the interacting systefperiodic-  critical point is the presence of an infinite countable set of
quasiperiodic, periodic-chaotic, chaotic-chaotic, )etilany  coexisting attractive periodic orbits of quadrupled period that
such situations are of interest both for theory and for novelve refer to as the critical quasiattractor.
applications in secure communication, control of chaos, stud- In Sec. Il we discuss some relevant details of the arrange-
ies of living systemge.g.,[8—11)). ment of the parameter space for the forceg®er oscillator.
One of the outlined phenomena is phase synchronizatioln Sec. Il we shortly recall some basic properties of the
of low-dimensional chaotic dissipative systerf2,13,3. critical behavior for a model map that plays the same role for
This notion relates to a situation when some phase variableur universality class as the logistic map for the Feigenbaum
can be attributed to a system with a strange attractor. In theriticality. In Sec. IV we present numerical data, which give
process of time evolution this variable appears to be locke@vidence of the existence of the critical point. We locate this
and retains a certain relation with the phase of the periodipoint with high accuracy at some particular fixed amplitude
external force, although the dynamics of the amplitude i®f the external force. Phase portraits are demonstrated for
chaotic. several stable limit cycles—representatives of the infinite
It is natural to consider a system depending on some pdamily of attractors coexisting at the critical point. In conclu-
rameters, which could manifest either periodic or chaotic ausion we briefly discuss the significance of our results for the
tonomous dynamics in corresponding regions of its paramtheory of phase synchronization and a possibility of experi-
eter space. In the presence of an external force, we camental observation of th€-type critical behavior.
observe a classic version of synchronization in the first case
and the phase synchronization of chaos in the second. It is Il. DRIVEN RO SSLER MODEL AND ITS
interesting to analyze possible bifurcation scenarios associ- PARAMETER SPACE
ated with such situations. ) . ) _ N
Detailed bifurcational analysis for the classic synchroni- Let us consider the Rsler equations with an additional
zation was developed by many authors, d4-4,15-19. In term corresponding to the external periodic force,
this article we turn to synchronization in a system, which .

demonstrates Feigenbaum’s period-doubling scenario of the X=—X—z+Asin27Qt,

onset of chao$20,21]. As a concrete example we select the _

Rossler model, which is a convenient object in the studies of y=X+pYy,

phase synchronizatiofil2,13. Dynamical behavior of this

system, associated with the spiral-type strange attractor, is i=q+z(x—r), (1)

very typical for many low-dimensional chaotic systefhd].
Let us assume that we observe the period-doubling caswherex, y, andz are dynamical variables angl g, andr are
cade in the forced system and move along the chaos bord@rternal parameters of the Bsler oscillatorA and() are the
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: e FIG. 1. Three-dimensional view of the param-
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amplitude and frequency of the external driving. We fiix dynamics. Moving in the synchronization zone upwards, i.e.,
=q=0.2 and consider as the main internal control param- increasingr, one can observe a sequence of period-doubling
eter. As known, in the autonomous system increase of bifurcations of the synchronous regime. _
gives rise to the period-doubling bifurcation cascade and a The outer borders of the synchronization tongue consist
subsequent transition to chajel. According to the normal- mainly of the saddle-node bifurcation lines. More accurate
ization accepted in Eq1), the period of the external force is analysis reveals nontrivial bifurcation structures near the
T=1/Q. Thus, the periods of regular synchronized state0ints, where the period-doubling curves approach the bor-
must be integer multiples of this value. der of the synchronization zone. These structures include
In the numerical computations we used a Runge-Kuttz€gments of Neimark and subcritical period-doubling bifur-
method with adaptive step-size contf@6]. The algorithm ~ cation lines as shown by the insets in Fig. 2. Note the pres-
was supplemented by simultaneous integration of the lineaf@nce of intersecting bifurcation curves indicating occurrence
ized Rssler equations, the Newton-Raphson procedure t@f distinct coexisting attractors, hard transitions, and hyster-
search for periodic orbits, and by calculation of the Floque€SiS- At larger amplitudes of the driving these areas become
eigenvalues. In our forced three-dimensional system a perfelatively more pronounced.
odic orbit has three Floquet eigenvalues, which are also re-
ferred to as multipliers. Usually one of the multipliers is
small in modulus and does not influence the bifurcation

events, while two others may be of relevance. As kn¢in Roughly speaking, near the onset of chaos at the edge of
at the threshold of Stabl'lty |OSS, one of the three fO”OWingthe synchronization zone in the forced $Rter osci”ator,
situations can occur genericallfi) one of the multipliers  variation of one control parameter leads to period doubling,
becomes equal te-1 (the period-doubling bifurcation(ii)  and variation of another one leads to the saddle-ricate

it becomes equal to {the saddle-node or tangent bifurca- genp bifurcation.

tion), and(iii) two complex-conjugate multipliers are at the ~ The following two-dimensional map suggested 24,25

unit circle (the Neimark bifurcation appears to be an appropriate model for exploration of this
Figure 1 shows the main synchronization zone, or Arnoldsjtyation:

tongue, for the periodically driven Reler oscillator in the ) 5 , 5
three-dimensional parameter spa€k (,A). At small values X'=a—X°+by, Y'=-X°+dY. 2

gf r th_e classic s;l/:ncr}ronlzlﬁ;uon of rt]he perlodlc_ I|m|t-c&/cle Here a prime marks the dynamical variab¥eandY relating
ynamics oCcurs. or largetthe Synchronous regime Under- 4, ynq peyt step of discrete time; b, andd are parameters.

goes the. nggenbaum period-doubling cascade. The chaoii is convenient to keep constant and analyze dynamics by
regimes inside the tongue correspond to the phase SynChr%rying the two other parametems,andd. Increase of at

nguon ogtg_e ITssIer a}[ttracc;pr. ional di in th small or moderate values al gives rise to the period-
\gure ISplays a two-dimensional diagram In the IOa'doubling cascade. The period-doubling bifurcation curves on
rameter planeQ,r), which represents a cross section of the

h I he Fei iti-
previous figure by the horizontal surfade=0.1. The middle the parameter plana(d) converge to the Feigenbaum crit

: o . cal line. On the other hand, increasidgne can find that this
part of the plot is the synchronization zone. Light gray re-

) N . line is terminated at some critical point. For a particular fixed
gions correspond to quasiperiodic regimes, the dark gray

o Talue ofb=—0.6663 it is located at
area at the top corresponds to phase synchronization o
chaos, and black areas correspond to asynchronous chaotic a=0.24990280..., d=0.45290288.... (3

Ill. MODEL MAP AND THE CRITICAL BEHAVIOR
OF CTYPE

046214-2



UNIVERSALITY AND SCALING FOR THE BREAKUP CF . ..

3.06

3.02¢

228 -

294+

0.172

0.175

Q

S-N

P-D

PHYSICAL REVIEW E 64 046214

FIG. 2. Bifurcation diagram for the periodi-
cally driven Rasler oscillator on the parameter
plane @,r), at A=0.1. The white area in the
middle is the synchronization zone. Light gray
areas correspond to quasiperiodic regimes, dark
gray areas at the top to phase synchronization of
chaos, and black areas to asynchronous chaotic
dynamics. Insets show details of the bifurcational
structure near the terminal points of the period-
doubling curves marked a&-D. The subcritical
period-doubling bifurcation line is designated as
SP-D, the bifurcation lines of saddle-nod&an-
geny bifurcations are designated &N, and
those of Neimark bifurcations as.

290 -

0.1699 0.1701 0.1703 0.1768 0.1769 0.1770

Details of dynamics at the critical point and in its neigh-  Unfortunately, the spectrum of the linearized RG equation
borhood were studied by means of the renormalization-groupontains an eigenvalue close to 1, namefy;=0.93. Al-
(RG) approach. It is based on a two-dimensional version othough formally irrelevant, it is associated with an eigen-
the doubling transformation of Feigenbaum-Cvitano{gee  mode, which decays very slowly from level to level of the
[20,21)). It appears that the critical behavior is associatedperiod quadrupling. Due to this circumstance, the clearly ex-
with a period-2 saddle orbit of the RG transformation. ForpressedC-type universality becomes observable, in general,
this reason this type of criticality is referred to @stype, only at high levels. To avoid this problem and optimize the
where the letter C” stands for the word “cycle.” Alterna-  convergence, one can exploit the presence of the third con-
tively, one can speak of a fixed point of tlggiadrupling  trol parameterb in the model map(2): its value may be
transformation. In contrast to the case of Feigenbaum'’s critiselected in such a way that the amplitude of the slow mode
cality, all manifestations of scaling correspond to the quadruvanishes.
pling, rather than the doubling of time scales. In the three-dimensional parameter space Gtigpe criti-

The numerical solution for the fixed point of the quadru- cality occurs at some curve, but only a particular point on
pling RG transformation yields universal functiofsee the this curve is well suited for practical observation of the uni-
numerical data for coefficients of polynomial expansions inversal scaling regularities. The abovementioned value of
[22,23,29) and a pair of universal constants, the phase spacke= —0.6663 was selected for this reason.
scaling factors A remarkable property of the dynamics at the critical
point (3) is coexistence of an infinite set of attractors—stable
cycles of periods 4 k=0,1, . . . [24,25. The Floquet eigen-
values (multipliers) for these cycles are equé&symptoti-

The quadrupling RG transformation linearized at the fixedcally) to universal values found from the RG analysis,
point gives rise to an eigenvalue problem. This has been
solved numerically and appears to have two relevant eigen- ui=-07252% ..., wu5=0.84749.... (6)
values[22,23,25

@;=6.56539 ... and @,=22.12027.... (4)

The “intermediate” cycles of periods 24" are unstable,

61=92.4312638 ... and 6,=4.1924448... . and their universal multipliers ate

©)

These are the factors responsible for the scaling properties of

the parameter space near thaype critical point. The pres-

ence of two relevant eigenvalues means that the discussedit is also possible that in asymptotics of largethe cycles of
type of critical behavior is of codimension 2, i.e., one needseriod 2<4" are stable with multiplierg6), while the cycles of
to adjusttwo control parameters to reach the critical situa-period 4' are unstable with multiplieré7). For the map(2) this is
tion. the case for positive.

wS=-0.84886 ..., us=11744%.... (7)
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TABLE |. Period-doubling terminal points a&=0.1.

N X y z r Q

1 2.5759048090 2.7458248531 3.2766571344 2.9668861906 0.17006220271
2 3.3463735559 2.6148283377 8.2361397123 3.8618621573 0.17009194241
4 3.8011617532 2.9208207926 7.3514962256 4.1109005901 0.16989964755
8 3.908794885 2.8172715016 7.9993329812 4.1667635657 0.16985207870
16 3.9230764444 2.8638499524 7.8052490605 4.1790083430 0.16984155604
32 3.9308229446 2.8458704049 7.8969364703 4.1815343711 0.16983937313
64 3.9301626916 2.8533802216 7.8632883002 4.1821300905 0.1698388587

128 3.9311583394 2.8503551802 7.8774107247 4.1822297423 0.16983877260
256 3.9308108246 2.8516062593 7.8718942407 4.1822653227 0.16983874186

As known, any type of critical dynamics allowing appli- cations is known to be infinite. Hence, it is natural to con-
cation of RG analysis gives rise to a class of quantitativgecture that the sequence of the terminal points is infinite too,
universality that may include many systems of different na-and it converges to some critical point. The numerical data of
ture[20,27-29,23,3P The same must be true with respect to Table | support this assertion.
the C—tyge critical behavior. As we argue in this article, the The same Computations may be performed as well at
driVen RCSS|eI‘ OSCillatOI‘ at the period-doubling aCCUmUlationother values of the amp“tu(ﬁ_ In three-dimensional param-
point on thg edge'of Arn_old tongue is a representative of theter space it yields a sequence of “terminal curvésde Fig.
corresponding universality class. 1), which accumulate to some limit curve. We argue that the
system demonstrates at this curve the critical behavid of
type discussed in Sec. Il

As explained, convergence to the asymptotically universal

We now return to the periodically forced Bsler model. scaling behavior pr type may be very slow due to 'the
Exploring the edge of the synchronization zone, we observ8'esence Of. the e|gen_value shg_htly less than 1.' For this rea-
a sequence of codimension-2 bifurcation points, at which th&°": 1 o_lgtam conw_ncmg_numerlcal da‘?‘ revealln_g the na_ture
period-doubling curves meet the saddle-node lifse® Fig. of the cr|t_|(_:al behavior, |'F is worth selecting a partlcula_r point
2). We refer to these points as tperiod-doubling terminal ~ ©" the crltl_cal curve, \_Nhlch corre_sponds to zero ampl_ltude of
points At such points the synchronized periodic orbit ap-the slow eigenmode in the solution of the RG equation.
pears to be at the threshold of instability in respect to the two L€t Us suppose that we have computed the sequence of
distinct modes of perturbation, and two of the multipliers aretérminal points and estimated the limit for some valuedof
wi=1andu,=—1. Then we search for the limit cycles of period 1,4,16. and

In Table | we present coordinates of the points terminatcompare their multipliers with the universal valués Next,
ing the period-doubling bifurcation curves on one edge of thave change the amplitudé gradually and trace the variation
synchronization zone up to period 25Bereafter the peri- Of the multipliers for several coexisting cycles. The closer to
ods are measured in units of a period of the external fprcethe optimal point, the closer are all the multipliers to the
One more period-doubling terminal sequence and the respe¥alues(6). On the final stage of the procedure we simulta-
tive critical point are located at the opposite side of the Ar-neously adjust the two parameters() to satisfy equalities
nold tongue. wi(49=pus, u(4=us, and tune the third parametér

Inside the Arnold tongue, where the Feigenbaum bifurcato fulfill the additional conditiom2(4k‘1)=,u§.
tion cascade occurs, a sequence of the period-doubling bifur- The greatek is, the better estimate for the optimal critical

IV. C-TYPE CRITICAL BEHAVIOR IN THE DRIVEN
ROSSLER OSCILLATOR

TABLE II. A sequence of the period-doubling terminal points at the optimal value of amplitude
A=1.35 and estimates for the parameter-space scaling fagtor

N r Q oy 620
1 5.732239864848575 0.1510840937189741
2 2.977715775644518 0.1383526282404057
4 5.123248075904194 0.1488441036460531
8 4.718523541397686 0.1475413488683935 6.805923 9.772726
16 4.983120254420295 0.1484037045629827 8.108688 1.216606
32 4.887643400101043 0.1480995675987042 4.238980 4.283447
64 4.947202062137271 0.1482900572326032 4.442623 4.527047
128 4.924430060892722 0.1482175502249565 4.192730 4.194587

046214-4
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TABLE IlI. Initial points (att=0) and multipliers for cycles of period=2* at the critical point(8).

N Xo Yo Zy M1 M2

1 4.506416552153 3.567399962374 1.816412780933 0.777162-0.600727
2 4.877551206560 2.987654298236 1.111795695017 1.229085-0.911129
4 5.327317412038 2.742405627024 1.524162104533 0.858520-0.685901
8 5.281240682500 2.727878439530 1.389046629011 1.180212-0.860374
16 5.336876017064 2.70046225872 1.453022915555 0.85021—0.71942
32 5.324414524360 2.704014865671 1.432967779067 1.17467—0.84945
64 5.332097301574 2.700664355370 1.442868136652 0.84756—0.73033
128 5.329978026968 2.701455341398 1.439851023798 1.1724 —0.8342
256 5.331100238443 2.700990282432 1.441351778370 0.850 —0.721

point could be obtained. Practically, due to restrictions im-
posed by limited numerical precision in our computations of
the unstable cycles of large periofEnd their multiplierg

we have to stop at=38.

In two first columns of Table Il we present coordinates forwe obtain estimates for the smaller parameter-space scaling
the sequence of the terminal point at the selected optimdRctor, as seen in the last two columns of Table II. They are
amplitude of the external forc&=1.35. The limit point of in good correspondence with the valdg=4.1924 ...
this sequence is the critical point located in accordance witfiound from the RG analysis.
the best estimate at Unfortunately, dealing with a restricted number of period-
doubling levels we could not obtain convincing empirical
data for the rest of théargen constantsy, and §;. Never-
theless, the observed agreement of the multipliers and of the
scaling factors with those found for the model m@p, and
with those obtained from the RG analysis, strongly supports
In Fig. 1 this point is marked by a bullet. the assertion that the observed critical behavior in the forced

In Table Il the data for the periodic orbitstable and  Rgssler oscillator actually is of the type discussed in Sec. IIl.
unstable at the critical point are presented. The coordinatesThis means that the system must exhibit all the attributes of
(X0,Y0,20) relate to the starting point of the periodic orbit at the C-type universality class, including the critical
t=0. Observe that the multipliers of the periodic orbits arequasiattractor—the infinite countable set of stable periodic
remarkably close to their expected universal val®sand  orbits of quadrupled period. From Table Ill we observe that
(7). the cycles of period 1, 4, 16, 64, 256 indeed are stable. They

Using the values ofxj,Yo,2p) for subsequent cycles of have to be regarded as the first representatives of the infinite
periodsN= 4% andN;=4*"" from Table Il one can estimate set of stable cycles at the critical point Gftype. In Fig. 3
the smaller phase space scaling facigr[see Eq.(4)] by  we show phase portraits for the attractive cycle of periods 1,
ratios  aj;x=Axy, /AXy, ayy=Ayn, Ay, ai, 4,16, 64. Itis worth noting here that tiztype critical point
=AZN1/AZN , whereAxy ,Ayy ,Azy designate the distances on the opposite edge of the Arnold tongue is of another kind:

in the, y, andz directions between two points of the orbit of the stable orbits are of periods<".
periodN, which are separated by half the period and have the
largest spacingTable 1V). Obviously, the results are in good
correspondence with the valug;=6.5653% ... obtained
from the RG approach.

The next test for th€-type universality is an estimate o
the parameter-space scaling factor from the numerical da
for the terminal pointgTable Il). Composing the ratios with
subsequent terms of the parameter sequences

02, =[r(Ny) =1 (N1/2)J/[r(N)—r(N/2)],

920 =[Q(N1) —Q(N/2) ]/[[Q(N) - Q(N/2)],

r.=4.935701677 387 16,

0.=0.148253488 1146906, A.=1.35. (8)

V. CONCLUSION

Analyzing the situation of breakup of synchronization in a
f periodically driven Resler oscillator for the cycles belong-
ting to the period-doubling sequence we find a specific type
6f universal behavior at the so-callégitype critical point.
Earlier it was known only in context of abstract, artificially
constructed model maps. Now we have an example, which is
much closer to physically realizable objects.
As known, the Resler oscillator manifests the dynamical
behavior typical for a wide class of low-dimensional dissipa-

TABLE IV. Estimates for the phase space scaling facter

N Fix Ly He tive chaotic systems, namely, the period-doubling cascade
16 5.976519 5.528877 6.920036  leading to the onset of chaotic attractor of the spiral type. We
32 6.410982 5.730828 6.421471  believe that the dynamical properties analogous to those
64 6.442042 6.244803 6.658738  found in the forced Rssler oscillator will occur also in other
256 6.552378 6.409687 6.580197  Systems of this class under external periodic driving.

A remarkable feature of the critical point is the presence

046214-5
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FIG. 3. Attractive limit cycles
of period 1(a), 4 (b), 16 (c), and
64 (d) (measured in units of the
period of external forcefor the
periodically driven Resler oscil-
lator at the critical point(8).
These are four representatives of
an infinite set of stable periodic
orbits constituting the critical
quasiattractor.

of an infinite set of coexisting attractive periodic orbits. Asto five levels of period doublin§21]. Hence, it is important

may be conjectured, this is a universal attribute of the synto stress again that the amplitude of the external force should

chronization breakup corresponding to the limit of periodbe selected properly to ensure a possibility of observation of

doubling at the edge of the Arnold tongue. the expected universal regularities on the low levels of the
It may be expected that the critical behavior ©ftype  period-doubling cascade, just as we have done for the

could be observed in carefully organized experiments orRossler system in this study.

synchronization of period doubling dissipative systeémg.,

convective systems, e_Iectronlc osc!llators,)etfhe_ known ACKNOWLEDGMENTS
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