46 research outputs found

    Directing HIV-1 for degradation by non-target cells, using bi-specific single-chain llama antibodies

    Get PDF
    While vaccination against HIV-1 has been so far unsuccessful, recently broadly neutralizing antibodies (bNAbs) against HIV-1 envelope glycoprotein were shown to induce long-term suppression in the absence of antiretroviral therapy in patients with antibody-sensitive viral reservoirs. The requirement of neutralizing antibodies indicates that the antibody mediated removal (clearance) of HIV-1 in itself is not efficient enough in these immune compromised patients. Here we present a novel, alternative approach that is independent of a functional immune system to clear HIV-1, by capturing the virus and redirecting it to non-target cells where it is internalized and degraded. We use bispecific antibodies with domains derived from small single chain Llama antibodies (VHHs). These bind with one domain to HIV-1 envelope proteins and with the other domain direct the virus to cells expressing epidermal growth factor receptor (EGFR), a receptor that is ubiquitously expressed in the body. We show that HIV envelope proteins, virus-like particles and HIV-1 viruses (representing HIV-1 subtypes A, B and C) are efficiently recruited to EGFR, internalized and degraded in the lysosomal pathway at low nM concentrations of bispecific VHHs. This directed degradation in non-target cells may provide a clearance platform for the removal of viruses and other unwanted agents from the circulation, including toxins, and may thus provide a novel method for curing

    Enhancement of Polymeric Immunoglobulin Receptor Transcytosis by Biparatopic VHH

    Get PDF
    The polymeric immunoglobulin receptor (pIgR) ensures the transport of dimeric immunoglobulin A (dIgA) and pentameric immunoglobulin M (pIgM) across epithelia to the mucosal layer of for example the intestines and the lungs via transcytosis. Per day the human pIgR mediates the excretion of 2 to 5 grams of dIgA into the mucosa of luminal organs. This system could prove useful for therapies aiming at excretion of compounds into the mucosa. Here we investigated the use of the variable domain of camelid derived heavy chain only antibodies, also known as VHHs or Nanobodies®, targeting the human pIgR, as a transport system across epithelial cells. We show that VHHs directed against the human pIgR are able to bind the receptor with high affinity (∼1 nM) and that they compete with the natural ligand, dIgA. In a transcytosis assay both native and phage-bound VHH were only able to get across polarized MDCK cells that express the human pIgR gene in a basolateral to apical fashion. Indicating that the VHHs are able to translocate across epithelia and to take along large particles of cargo. Furthermore, by making multivalent VHHs we were able to enhance the transport of the compounds both in a MDCK-hpIgR and Caco-2 cell system, probably by inducing receptor clustering. These results show that VHHs can be used as a carrier system to exploit the human pIgR transcytotic system and that multivalent compounds are able to significantly enhance the transport across epithelial monolayers

    Llama-Derived Single Domain Antibodies to Build Multivalent, Superpotent and Broadened Neutralizing Anti-Viral Molecules

    Get PDF
    For efficient prevention of viral infections and cross protection, simultaneous targeting of multiple viral epitopes is a powerful strategy. Llama heavy chain antibody fragments (VHH) against the trimeric envelope proteins of Respiratory Syncytial Virus (Fusion protein), Rabies virus (Glycoprotein) and H5N1 Influenza (Hemagglutinin 5) were selected from llama derived immune libraries by phage display. Neutralizing VHH recognizing different epitopes in the receptor binding sites on the spikes with affinities in the low nanomolar range were identified for all the three viruses by viral neutralization assays. By fusion of VHH with variable linker lengths, multimeric constructs were made that improved neutralization potencies up to 4,000-fold for RSV, 1,500-fold for Rabies virus and 75-fold for Influenza H5N1. The potencies of the VHH constructs were similar or better than best performing monoclonal antibodies. The cross protection capacity against different viral strains was also improved for all three viruses, both by multivalent (two or three identical VHH) and biparatopic (two different VHH) constructs. By combining a VHH neutralizing RSV subtype A, but not subtype B with a poorly neutralizing VHH with high affinity for subtype B, a biparatopic construct was made with low nanomolar neutralizing potency against both subtypes. Trivalent anti-H5N1 VHH neutralized both Influenza H5N1 clade1 and 2 in a pseudotype assay and was very potent in neutralizing the NIBRG-14 Influenza H5N1 strain with IC50 of 9 picomolar. Bivalent and biparatopic constructs against Rabies virus cross neutralized both 10 different Genotype 1 strains and Genotype 5. The results show that multimerization of VHH fragments targeting multiple epitopes on a viral trimeric spike protein is a powerful tool for anti-viral therapy to achieve "best-in-class" and broader neutralization capacity

    The Fab region of IgG impairs the internalization pathway of FcRn upon Fc engagement

    Get PDF
    Binding to the neonatal Fc receptor (FcRn) extends serum half-life of IgG, and antagonizing this interaction is a promising therapeutic approach in IgG-mediated autoimmune diseases. Fc-MST-HN, designed for enhanced FcRn binding capacity, has not been evaluated in the context of a full-length antibody, and the structural properties of the attached Fab regions might affect the FcRn-mediated intracellular trafficking pathway. Here we present a comprehensive comparative analysis of the IgG salvage pathway between two full-size IgG1 variants, containing wild type and MST-HN Fc fragments, and their Fc-only counterparts. We find no evidence of Fab-regions affecting FcRn binding in cell-free assays, however, cellular assays show impaired binding of full-size IgG to FcRn, which translates into improved intracellular FcRn occupancy and intracellular accumulation of Fc-MST-HN compared to full size IgG1-MST-HN. The crystal structure of Fc-MST-HN in complex with FcRn provides a plausible explanation why the Fab disrupts the interaction only in the context of membrane-associated FcRn. Importantly, we find that Fc-MST-HN outperforms full-size IgG1-MST-HN in reducing IgG levels in cynomolgus monkeys. Collectively, our findings identify the cellular membrane context as a critical factor in FcRn biology and therapeutic targeting

    Llama Antibody Fragments Recognizing Various Epitopes of the CD4bs Neutralize a Broad Range of HIV-1 Subtypes A, B and C

    Get PDF
    Many of the neutralising antibodies, isolated to date, display limited activities against the globally most prevalent HIV-1 subtypes A and C. Therefore, those subtypes are considered to be an important target for antibody-based therapy. Variable domains of llama heavy chain antibodies (VHH) have some superior properties compared with classical antibodies. Therefore we describe the application of trimeric forms of envelope proteins (Env), derived from HIV-1 of subtype A and B/C, for a prolonged immunization of two llamas. A panel of VHH, which interfere with CD4 binding to HIV-1 Env were selected with use of panning. The results of binding and competition assays to various Env, including a variant with a stabilized CD4-binding state (gp120Ds2), cross-competition experiments, maturation analysis and neutralisation assays, enabled us to classify the selected VHH into three groups. The VHH of group I were efficient mainly against viruses of subtype A, C and B′/C. The VHH of group II resemble the broadly neutralising antibody (bnmAb) b12, neutralizing mainly subtype B and C viruses, however some had a broader neutralisation profile. A representative of the third group, 2E7, had an even higher neutralization breadth, neutralizing 21 out of the 26 tested strains belonging to the A, A/G, B, B/C and C subtypes. To evaluate the contribution of certain amino acids to the potency of the VHH a small set of the mutants were constructed. Surprisingly this yielded one mutant with slightly improved neutralisation potency against 92UG37.A9 (subtype A) and 96ZM651.02 (subtype C). These findings and the well-known stability of VHH indicate the potential application of these VHH as anti-HIV-1 microbicides

    Antibodies Targeting Chemokine Receptors CXCR4 and ACKR3

    No full text
    Dysregulation of the chemokine system is implicated in a number of autoimmune and inflammatory diseases, as well as cancer. Modulation of chemokine receptor function is a very promising approach for therapeutic intervention. Despite interest from academic groups and pharmaceutical companies, there are currently few approved medicines targeting chemokine receptors. Monoclonal antibodies (mAbs) and antibody-based molecules have been successfully applied in the clinical therapy of cancer and represent a potential new class of therapeutics targeting chemokine receptors belonging to the class of G protein-coupled receptors (GPCRs). Besides conventional mAbs, single-domain antibodies and antibody scaffolds are also gaining attention as promising therapeutics. In this review, we provide an extensive overview of mAbs, single-domain antibodies, and other antibody fragments targeting CXCR4 and ACKR3, formerly referred to as CXCR7. We discuss their unique properties and advantages over small-molecule compounds, and also refer to the molecules in preclinical and clinical development. We focus on single-domain antibodies and scaffolds and their utilization in GPCR research. Additionally, structural analysis of antibody binding to CXCR4 is discussed. SIGNIFICANCE STATEMENT: Modulating the function of GPCRs, and particularly chemokine receptors, draws high interest. A comprehensive review is provided for monoclonal antibodies, antibody fragments, and variants directed at CXCR4 and ACKR3. Their advantageous functional properties, versatile applications as research tools, and use in the clinic are discussed

    Selection of Nanobodies that Target Human Neonatal Fc Receptor

    Get PDF
    FcRn is a key player in several immunological and non-immunological processes, as it mediates maternal-fetal transfer of IgG, regulates the serum persistence of IgG and albumin, and transports both ligands between different cellular compartments. In addition, FcRn enhances antigen presentation. Thus, there is an intense interest in studies of how FcRn binds and transports its cargo within and across several types of cells, and FcRn detection reagents are in high demand. Here we report on phage display-selected Nanobodies that target human FcRn. The Nanobodies were obtained from a variable-domain repertoire library isolated from a llama immunized with recombinant human FcRn. One candidate, Nb218-H4, was shown to bind FcRn with high affinity at both acidic and neutral pH, without competing ligand binding and interfering with FcRn functions, such as transcytosis of IgG. Thus, Nb218-H4 can be used as a detection probe and as a tracker for visualization of FcRn-mediated cellular transport
    corecore