52 research outputs found

    Development and application of a positive–negative selectable marker system for use in reverse genetics in Plasmodium

    Get PDF
    A limitation of transfection of malaria parasites is the availability of only a low number of positive selectable markers for selection of transformed mutants. This is exacerbated for the rodent parasite Plasmodium berghei as selection of mutants is performed in vivo in laboratory rodents. We here report the development and application of a negative selection system based upon transgenic expression of a bifunctional protein (yFCU) combining yeast cytosine deaminase and uridyl phosphoribosyl transferase (UPRT) activity in P.berghei followed by in vivo selection with the prodrug 5-fluorocytosine (5-FC). The combination of yfcu and a positive selectable marker was used to first achieve positive selection of mutant parasites with a disrupted gene in a conventional manner. Thereafter through negative selection using 5-FC, mutants were selected where the disrupted gene had been restored to its original configuration as a result of the excision of the selectable markers from the genome through homologous recombination. This procedure was carried out for a Plasmodium gene (p48/45) encoding a protein involved in fertilization, the function of which had been previously implied through gene disruption alone. Such reversible recombination can therefore be employed for both the rapid analysis of the phenotype by targeted disruption of a gene and further associate phenotype and function by genotype restoration through the use of a single plasmid and a single positive selectable marker. Furthermore the negative selection system may also be adapted to facilitate other procedures such as ‘Hit and Run’ and ‘vector recycling’ which in principle will allow unlimited manipulation of a single parasite clone. This is the first demonstration of the general use of yFCU in combination with a positive selectable marker in reverse genetics approaches and it should be possible to adapt its use to many other biological systems

    Proteomic Profiling of Plasmodium Sporozoite Maturation Identifies New Proteins Essential for Parasite Development and Infectivity

    Get PDF
    Plasmodium falciparum sporozoites that develop and mature inside an Anopheles mosquito initiate a malaria infection in humans. Here we report the first proteomic comparison of different parasite stages from the mosquito—early and late oocysts containing midgut sporozoites, and the mature, infectious salivary gland sporozoites. Despite the morphological similarity between midgut and salivary gland sporozoites, their proteomes are markedly different, in agreement with their increase in hepatocyte infectivity. The different sporozoite proteomes contain a large number of stage specific proteins whose annotation suggest an involvement in sporozoite maturation, motility, infection of the human host and associated metabolic adjustments. Analyses of proteins identified in the P. falciparum sporozoite proteomes by orthologous gene disruption in the rodent malaria parasite, P. berghei, revealed three previously uncharacterized Plasmodium proteins that appear to be essential for sporozoite development at distinct points of maturation in the mosquito. This study sheds light on the development and maturation of the malaria parasite in an Anopheles mosquito and also identifies proteins that may be essential for sporozoite infectivity to humans

    Generation of a genetically modified chimeric plasmodium falciparum parasite expressing plasmodium vivax circumsporozoite protein for malaria vaccine development

    Get PDF
    Copyright © 2020 Miyazaki, Marin-Mogollon, Imai, Mendes, van der Laak, Sturm, Geurten, Miyazaki, Chevalley-Maurel, Ramesar, Kolli, Kroeze, van Schuijlenburg, Salman, Wilder, Reyes-Sandoval, Dechering, Prudencio, Janse, Khan and ̂ Franke-Fayard. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.Chimeric rodent malaria parasites with the endogenous circumsporozoite protein (csp) gene replaced with csp from the human parasites Plasmodium falciparum (Pf) and P. vivax (Pv) are used in preclinical evaluation of CSP vaccines. Chimeric rodent parasites expressing PfCSP have also been assessed as whole sporozoite (WSP) vaccines. Comparable chimeric P. falciparum parasites expressing CSP of P. vivax could be used both for clinical evaluation of vaccines targeting PvCSP in controlled human P. falciparum infections and in WSP vaccines targeting P. vivax and P. falciparum. We generated chimeric P. falciparum parasites expressing both PfCSP and PvCSP. These Pf-PvCSP parasites produced sporozoite comparable to wild type P. falciparum parasites and expressed PfCSP and PvCSP on the sporozoite surface. Pf-PvCSP sporozoites infected human hepatocytes and induced antibodies to the repeats of both PfCSP and PvCSP after immunization of mice. These results support the use of Pf-PvCSP sporozoites in studies optimizing vaccines targeting PvCSP.CM-M was, in part, supported by Colciencias Ph.D. fellowship (Call 568 from 2012 Resolution 01218 Bogotá, Colombia). TI was, in part, supported by Uehara Memorial Foundation grant. Work performed at IMM was supported by Fundação para a Ciência e Tecnologia (FCT-Portugal)’s grants PTDC/BBB-BMD/2695/2014 and PTDC-SAU-INF-29550-2017. AR-S is supported by the MRC-DPFS grant MR/N019008/1.info:eu-repo/semantics/publishedVersio

    Replication of Plasmodium in reticulocytes can occur without hemozoin formation, resulting in chloroquine resistance

    Get PDF
    Most studies on malaria-parasite digestion of hemoglobin (Hb) have been performed using P. falciparum maintained in mature erythrocytes, in vitro. In this study, we examine Plasmodium Hb degradation in vivo in mice, using the parasite P. berghei, and show that it is possible to create mutant parasites lacking enzymes involved in the initial steps of Hb proteolysis. These mutants only complete development in reticulocytes and mature into both schizonts and gametocytes. Hb degradation is severely impaired and large amounts of undigested Hb remains in the reticulocyte cytoplasm and in vesicles in the parasite. The mutants produce little or no hemozoin (Hz), the detoxification by-product of Hb degradation. Further, they are resistant to chloroquine, an antimalarial drug that interferes with Hz formation, but their sensitivity to artesunate, also thought to be dependent on Hb degradation, is retained. Survival in reticulocytes with reduced or absent Hb digestion may imply a novel mechanism of drug resistance. These findings have implications for drug development against human-malaria parasites, such as P. vivax and P. ovale, which develop inside reticulocytes

    Creation and preclinical evaluation of genetically attenuated malaria parasites arresting growth late in the liver.

    Get PDF
    Whole-sporozoite (WSp) malaria vaccines induce protective immune responses in animal malaria models and in humans. A recent clinical trial with a WSp vaccine comprising genetically attenuated parasites (GAP) which arrest growth early in the liver (PfSPZ-GA1), showed that GAPs can be safely administered to humans and immunogenicity is comparable to radiation-attenuated PfSPZ Vaccine. GAPs that arrest late in the liver stage (LA-GAP) have potential for increased potency as shown in rodent malaria models. Here we describe the generation of four putative P. falciparum LA-GAPs, generated by CRISPR/Cas9-mediated gene deletion. One out of four gene-deletion mutants produced sporozoites in sufficient numbers for further preclinical evaluation. This mutant, PfΔmei2, lacking the mei2-like RNA gene, showed late liver growth arrest in human liver-chimeric mice with human erythrocytes, absence of unwanted genetic alterations and sensitivity to antimalarial drugs. These features of PfΔmei2 make it a promising vaccine candidate, supporting further clinical evaluation. PfΔmei2 (GA2) has passed regulatory approval for safety and efficacy testing in humans based on the findings reported in this study

    Multicenter Comparison of Molecular Tumor Boards in The Netherlands:Definition, Composition, Methods, and Targeted Therapy Recommendations

    Get PDF
    Background Molecular tumor boards (MTBs) provide rational, genomics-driven, patient-tailored treatment recommendations. Worldwide, MTBs differ in terms of scope, composition, methods, and recommendations. This study aimed to assess differences in methods and agreement in treatment recommendations among MTBs from tertiary cancer referral centers in The Netherlands. Materials and Methods MTBs from all tertiary cancer referral centers in The Netherlands were invited to participate. A survey assessing scope, value, logistics, composition, decision-making method, reporting, and registration of the MTBs was completed through on-site interviews with members from each MTB. Targeted therapy recommendations were compared using 10 anonymized cases. Participating MTBs were asked to provide a treatment recommendation in accordance with their own methods. Agreement was based on which molecular alteration(s) was considered actionable with the next line of targeted therapy. Results Interviews with 24 members of eight MTBs revealed that all participating MTBs focused on rare or complex mutational cancer profiles, operated independently of cancer type-specific multidisciplinary teams, and consisted of at least (thoracic and/or medical) oncologists, pathologists, and clinical scientists in molecular pathology. Differences were the types of cancer discussed and the methods used to achieve a recommendation. Nevertheless, agreement among MTB recommendations, based on identified actionable molecular alteration(s), was high for the 10 evaluated cases (86%). Conclusion MTBs associated with tertiary cancer referral centers in The Netherlands are similar in setup and reach a high agreement in recommendations for rare or complex mutational cancer profiles. We propose a "Dutch MTB model" for an optimal, collaborative, and nationally aligned MTB workflow. Implications for Practice Interpretation of genomic analyses for optimal choice of target therapy for patients with cancer is becoming increasingly complex. A molecular tumor board (MTB) supports oncologists in rationalizing therapy options. However, there is no consensus on the most optimal setup for an MTB, which can affect the quality of recommendations. This study reveals that the eight MTBs associated with tertiary cancer referral centers in The Netherlands are similar in setup and reach a high agreement in recommendations for rare or complex mutational profiles. The Dutch MTB model is based on a collaborative and nationally aligned workflow with interinstitutional collaboration and data sharing

    Association of genetic variants of the histamine H1 and muscarinic M3 receptors with BMI and HbA1c values in patients on antipsychotic medication

    Get PDF
    Rationale: Antipsychotic affinity for the histamine H1 receptor and the muscarinic M3 receptor have been associated with the side effects weight gain, and development of diabetes, respectively. Objectives: We investigated polymorphisms of the histamine H1 (HRH1) and muscarinic acetylcholine receptor M3 (CHRM3) receptor genes for an association with body mass index (BMI) and glycated hemoglobin (HbA1c). Methods: We included 430 Caucasian patients with a non-affective psychotic disorder using antipsychotics for at least 3 months. Primary endpoints of the study were cross-sectionally measured BMI and HbA1c; secondary endpoints were obesity and hyperglycaemia. Two single-nucleotide polymorphisms (SNPs) in the HRH1 gene, rs346074 and rs346070, and one SNP in the CHRM3 gene, rs3738435, were genotyped. Our primary hypothesis in this study was an interaction between genotype on BMI and antipsychotic affinity for the H1 and M3 receptor. Results: A significant association of interaction between haplotype rs346074-rs346070 and BMI (p value 0.025) and obesity (p value 0.005) in patients using high-H1 affinity antipsychotics versus patients using low-H1 affinity antipsychotics was found. There was no association of CHRM3 gene variant rs3738435 with BMI, and we observed no association with HbA1c or hyperglycaemia in any of the variants. Conclusions: This study, for the first time, demonstrates a significant association between HRH1 variants and BMI in patients with a psychotic disorder using antipsychotics. In future, genotyping of HRH1 variants may help predicting weight gain in patients using antipsychotics

    Impact of DNA damage repair defects and aggressive variant features on response to carboplatin-based chemotherapy in metastatic castration-resistant prostate cancer

    Get PDF
    Platinum-based chemotherapy is not standard of care for unselected or genetically selected metastatic castration-resistant prostate cancer (mCRPC) patients. A retrospective assessment of 71 patients was performed on platinum use in the Netherlands. Genetically unselected patients yielded low response rates. For a predefined subanalysis of all patients with comprehensive next-generation sequencing, 30 patients were grouped based on the presence of pathogenic aberrations in genes associated with DNA damage repair (DDR) or aggressive variant prostate cancer (AVPC). Fourteen patients (47%) were DDR deficient (DDRd), of which seven with inactivated BRCA2 (BRCA2mut). Six patients classified as AVPC. DDRd patients showed beneficial biochemical response to carboplatin, largely driven by all BRCA2mut patients having >50% prostate-speci

    A P. falciparum NF54 Reporter Line Expressing mCherry-Luciferase in Gametocytes, Sporozoites, and Liver-Stages

    Get PDF
    Transgenic malaria parasites expressing fluorescent and bioluminescent proteins are valuable tools to interrogate malaria-parasite biology and to evaluate drugs and vaccines. Using CRISPR/Cas9 methodology a transgenic Plasmodium falciparum (Pf) NF54 line was generated that expresses a fusion of mCherry and luciferase genes under the control of the Pf etramp10.3 gene promoter (line [email protected]). Pf etramp10.3 is related to rodent Plasmodium uis4 and the uis4 promoter has been used to drive high transgene expression in rodent parasite sporozoites and liver-stages. We examined transgene expression throughout the complete life cycle and compared this expression to transgenic lines expressing mCherry-luciferase and GFP-luciferase under control of the constitutive gapdh and eef1a promoters. The [email protected] parasites express mCherry in gametocytes, sporozoites, and liver-stages. While no mCherry signal was detected in asexual blood-stage parasites above background levels, luciferase expression was detected in asexual blood-stages, as well as in gametocytes, sporozoites and liver-stages, with the highest levels of reporter expression detected in stage III-V gametocytes and in sporozoites. The expression of mCherry and luciferase in gametocytes and sporozoites makes this transgenic parasite line suitable to use in in vitro assays that examine the effect of transmission blocking inhibitors and to analyse gametocyte and sporozoite biology
    • …
    corecore