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Abstract

Platinum-based chemotherapy is not standard of care for unselected or genetically

selected metastatic castration-resistant prostate cancer (mCRPC) patients. A retro-

spective assessment of 71 patients was performed on platinum use in the

Netherlands. Genetically unselected patients yielded low response rates. For a

predefined subanalysis of all patients with comprehensive next-generation sequenc-

ing, 30 patients were grouped based on the presence of pathogenic aberrations in

genes associated with DNA damage repair (DDR) or aggressive variant prostate can-

cer (AVPC). Fourteen patients (47%) were DDR deficient (DDRd), of which seven

with inactivated BRCA2 (BRCA2mut). Six patients classified as AVPC. DDRd patients

showed beneficial biochemical response to carboplatin, largely driven by all

BRCA2mut patients having >50% prostate-specific antigen (PSA) decline and objec-

tive radiographic response. In the wild-type BRCA2 subgroup, 35% had a >50% PSA

decline (P = .006) and 16% radiographic response (P < .001). Median overall survival

was 21 months for BRCA2mut patients vs 7 months (P = .041) for those with func-

tional BRCA2. AVPC patients demonstrated comparable responses to non-AVPC,

including a similar overall survival, despite the poor prognosis for this subgroup. In

the scope of the registration of poly-(ADP)-ribose polymerase inhibitors (PARPi) for

mCRPC, we provide initial insights on cross-resistance between PARPi and platinum

compounds. By combining the literature and our study, we identified 18 patients

who received both agents. In this cohort, only BRCA2mut patients treated with
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platinum first (n = 4), responded to both agents. We confirm that BRCA2 inactivation

is associated with meaningful responses to carboplatin, suggesting a role for both

PARPi and platinum-based chemotherapy in preselected mCRPC patients.

K E YWORD S

aggressive variant prostate cancer, carboplatin, DNA repair, homologous recombination,

metastatic castration-resistant prostate cancer

1 | BACKGROUND

Treatment options for metastatic castration-resistant prostate cancer

(mCRPC) have expanded over the past decades, but long-term overall

survival remains limited, with only a minority of patients surviving lon-

ger than 3 years after the development of castration resistance.1

Taxane chemotherapy (docetaxel and more recently cabazitaxel) has

shown considerable survival benefit, thus became part of the standard

care in patients with mCRPC alongside the next-generation hormonal

agents abiraterone and enzalutamide. Unfortunately, therapy resis-

tance inevitably occurs, and novel therapeutic regimens are heavily

sought after. After the results from the Phase III PROfound trial, the

first poly-(ADP)-ribose polymerase (PARP) inhibitor has recently

received FDA approval to be introduced for mCRPC patients

harbouring pathogenic defects in DNA damage repair genes [DDR

deficient (DDRd)].2 DDRd is present in up to 20% to 30% of the

mCRPC patients.3 These aberrations are common in genes (in)directly

involved in the homologous recombination pathway, such as BRCA1/2,

ATM and CHEK2 (amongst others). Inherited or somatic mutations in

these genes involved in the detection and repair of DNA strand

breaks lead to genomic instability, commonly resulting in a more

aggressive disease and worse clinical outcomes after treatment with

next-generation hormonal agents or taxanes.3 In this DDRd popula-

tion, clinical trials are investigating whether platinum compounds

may also be effective (NCT03652493, NCT02985021, NCT04038502,

NCT02598895, NCT03442556).

Platinum compounds in mCRPC have been evaluated in clinical

trials over the last three decades. A recent systematic review and

meta-analysis illustrated the use of platinum-based chemotherapy,

commonly in combination with taxanes.4 Results from a limited num-

ber of randomised controlled trials with platinum compounds, with

unselected patients, have shown no overall survival benefit when

compared to standard of care chemotherapies.5-7 Therefore,

platinum-containing regimens are not current standard of care for

molecularly unselected patients with mCRPC. In patients with DDRd

tumours, multiple retrospective studies and case series have shown

clinical meaningful responses to platinum compounds.8-10 A recent

study demonstrated biochemical responses in half of the patients

with DDRd, particularly those with BRCA2 aberrations, as well as

those with alterations in PALB2, FANCA or CDK12.11 Patients with

small cell (neuroendocrine) prostate cancer (SC-NEPC) appear to

show superior disease control with platinum-based regimens over

standard of care taxane chemotherapy for mCRPC.12,13 A recent

study identified patients with aggressive variant prostate cancer

(AVPC), as a subtype defined as either SC-NEPC or prostate adeno-

carcinoma with clinicopathological features associated with poor

outcome, to benefit most from platinum-based regimens.14 This sub-

type is molecularly characterised by combined alterations in RB1,

TP53, and/or PTEN.15 The beneficial responses of distinct subtypes

underscore that platinum-based chemotherapy may have a role in

postponing progression and improving quality of life in selected

patient groups.

In this report, we assessed real-world use, and outcomes from

platinum-based chemotherapy in the Netherlands. Next, we exam-

ined the association between DDR alterations and platinum sensitiv-

ity in a retrospective study cohort with comprehensive tumour

and/or germline sequencing data available. We describe responsive-

ness of patients with germline and/or somatic alterations in a range

of DDR genes, focusing on alterations in BRCA2, molecular features

of AVPC and exceptional responders. Lastly, in the wake of registra-

tion of multiple PARP inhibitors (PARPi) for mCRPC, it is important

to investigate whether antitumour efficacy remains to PARPi after

exposure and resistance to platinum, and vice versa. We provide

new data on this cross-resistance between platinum chemotherapy

and PARPi.

What's new?

Platinum-based chemotherapy is not standard of care for

unselected or genetically-selected patients with metastatic

castration-resistant prostate cancer (mCRPC). However, sev-

eral studies have shown that platinum-based chemotherapy

may still have a role in postponing progression in selected

patient groups. This new study investigating DNA damage

repair gene alterations and response to platinum-based che-

motherapy provides evidence that deep and durable

responses are primarily associated with patients harbouring

BRCA2 inactivation. Based on these data and the limited

available literature, platinum-based chemotherapy followed

by PARP inhibition is potentially emerging as the optimal

treatment sequence in pre-selected mCRPC patients.
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2 | METHODS

2.1 | Patient population and study design

The main study population of this retrospective cohort study con-

sists of all mCRPC patients who started with platinum-based chemo-

therapy in the Radboudumc between July 2014 and January 1, 2020

(n = 36). The primary objective was to evaluate platinum responsive-

ness in patients with diverse alterations in genes directly or indirectly

involved in DDR. All 30 patients were included that had undergone

comprehensive genetic analysis by targeted or whole-genome

sequencing of primary or metastatic tumour tissue. For the compari-

son of outcome from platinum-based chemotherapy, between a ter-

tiary referral centre cohort (Radboudumc) and a real-world CRPC

cohort, 36 patients in the Castration-Resistant Prostate Cancer Regis-

try (CAPRI) were identified. One patient was present in both cohorts.

CAPRI is a population-based, observational, retrospective registry

based on pseudonymised patient files from CRPC patients from

20 hospitals in the Netherlands, balanced geographically and by type

of hospital.1 Identified patients from CAPRI received platinum-based

chemotherapy somewhere between January 2010 and December

2017, with follow-up until January 2019. CAPRI is registered in the

Dutch Trial Registry as NTR3591.

Demographic, clinical and histopathological data as well as diag-

nostic parameters were extracted from the electronic patient records.

In the Radboudumc cohort, a structured analysis was performed

based on the presence of at least one (likely) pathogenic somatic

and/or germline aberration in BRCA2 (BRCA2mut) as well as a

predefined panel of genes directly or indirectly involved in DDR

(DDRd), and a DDR proficient group (DDRp). All data were stored

anonymously. Patient follow-up for the Radboudumc was until the

May 01, 2020, lost-to-follow-up or death.

The Dutch cohort of patients from CAPRI was compared to the

Radboudumc cohort. An AVPC population was identified within the

Radboudumc cohort based on a molecular signature (AVPC-MS).

Cases with exceptional responses, defined as a prostate-specific anti-

gen (PSA) decline of more than 90% after platinum-based chemother-

apy, were analysed more comprehensively with additional tests. In

addition, patients who received both PARPi and platinum compounds

were identified for exploratory analysis and included until June 2020.

2.2 | Genetic testing

Archived or fresh tumour material was sequenced by either a non-

profit service provider (Center for Personalized Cancer Treatment

[CPCT]), or fee for service provider (Foundation Medicine [FMI]) and

often additionally sequenced by a custom in-house NGS platform.16,17

The Pathogenicity of the alterations was analysed (Peter H. J.

Slootbeek) and reassessed in a blinded manner by an experienced clin-

ical molecular biologist (Leonie I. Kroeze) at the Department of Pathol-

ogy, according to the guidelines for sequence variants.18 Gene

disruptions were classified as variant of unknown significance (VUS).

The predefined genes of interest for the DDRd group consisted of:

ATM, ATR, BAP1, BARD1, BRCA1, BRCA2, BARD1, BRIP1, CDH1,

CDK12, CHEK1, CHEK2, ERCC2, ERCC4, FANCA, FANCC, FANCD2,

FANCE, FANCF, FANCG, FANCI, FANCL, FANCM, MRE11A, NBN,

PALB2, PARP1, PARP2, PARP3, PPP2R2A, RAD51, RAD51B, RAD51C,

RAD51D, RAD52, RAD54L and RPA1. To meet the AVPC-MS, deleteri-

ous aberrations in at least two of TP53, RB1 or PTEN needed to be

present in the biopsied tumour material.15 The DNA mismatch repair

(MMR) genes MSH2, MSH6, MLH1 and PMS2, not in the predefined

DDRd list, were nevertheless included in the results, to give full

insight on the DDRd genomic profile of the study subjects, even

though MMR deficiency alone is not associated with response to plat-

inum or PARPi.

2.3 | Study outcomes

Biochemical (PSA) response to platinum-based chemotherapy was the

primary outcome of this study. Patients with baseline PSA values

below 2 μg/L were excluded for biochemical analyses. PSA responses

were assessed according to the Prostate Cancer Clinical Trials Work-

ing Group criteria,19 with assessment of declines of >50% (PSA50) and

>90% (PSA90). If PSA declined at any time from initiation of platinum-

based therapy until next therapy, this value was used to calculate

maximal change. If possible, early PSA rises before 12 weeks of ther-

apy were ignored. Patients with early biochemical, radiological or clini-

cal progression, and therefore a missing 12-week PSA, were defined

as PSA50 nonresponders in the analyses of PSA change at 12 (±2)

weeks. Secondary outcomes were overall survival (OS) and best radio-

graphic response. OS was defined as time from initiation of platinum-

based chemotherapy trough date of death from any cause or censored

at last date of follow-up if alive. Best radiographic response was clas-

sified according to Response Evaluation Criteria in Solid Tumours

(RECIST 1.1) criteria.20

2.4 | Statistical analyses

Baseline characteristics and biochemical outcomes between the sub-

groups were compared using the Pearson chi-square or Fisher exact

test for categorical variables and the nonparametric Mann-Whitney

U test for continuous variables. Kaplan-Meier curves were used to

visualise the survival and if adequate, OS was compared using

univariable Cox proportional hazards models. A two-sided P value

<.05 was considered significant. Factors associated with response

were identified using a univariable and multivariable linear regression.

To adhere to the presumptions of the regression model, the maximal

PSA change underwent additive and square root transformation. Vari-

ables with a P value <.20 in the univariable analyses were included for

a multivariable linear regression analysis. The multivariable model was

fitted by including variables in the model with a forward selection

strategy with an entry level of 0.05 at every step. Statistical tests

were performed using SPSS software (v25).
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3 | RESULTS

3.1 | Baseline characteristics and efficacy
of platinum chemotherapy in the CAPRI and
Radboudumc cohorts

In the Dutch population-based CAPRI, 36 patients were treated with

platinum-based chemotherapy in a time frame of 8 years. No data

were available on their molecular underpinnings. From the

Radboudumc, the same number of patients (36) was included. One

patient treated in the Radboudumc was also registered in CAPRI. The

CAPRI and the Radboudumc cohort were considered unmatched

populations (Table S1). Baseline alkaline phosphatase (ALP) and PSA

were higher in the Radboudumc cohort when compared to the CAPRI

cohort (ALP: 234 vs 126 U/L; PSA: 105 vs 52 μg/L).

For the CAPRI cohort, the median age at start of platinum-based

chemotherapy was 70 years. Patients were treated with cisplatin in

19% of the cases and with carboplatin in 81%, two patients received

the latter as monotherapy. The most frequent combination partners in

the remaining cases were docetaxel (33%) and etoposide (33%)

(Table S2). The proportion of patients with a PSA50 response was

16.7% in this cohort (Table S3). Median OS from start of platinum-

based chemotherapy was 7.0 months (Figure S1).

The median age of the Radboudumc cohort was 62 years at initia-

tion of platinum-based chemotherapy. All patients were treated with

carboplatin, 61% in combination with cabazitaxel, 11% received this
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as monotherapy. PSA50 response was observed in 47.1% of the

patients from the Radboudumc cohort. OS was comparable to the

CAPRI cohort with a median of 7.3 months.

3.2 | Molecular landscape of patients included
in the Radboudumc cohort

Of the 36 patients in the Radboudumc cohort, 30 underwent compre-

hensive genetic analysis. All therapies since diagnosis of castration-

resistance for the molecularly profiled patients are depicted in

Figure 1. In general, patients were heavily pretreated and received a

median of three lines of systemic therapies between castration-

resistance and initiation of platinum-based therapy. All but two

(Subjects 12 and 25) underwent prior treatment with a taxane. Four-

teen of the 30 evaluable patients (47%) harboured deleterious genetic

alterations in the predefined genes directly or indirectly involved in

DDR (DDRd), half of these patients had a (likely) pathogenic BRCA2

alteration (BRCA2mut) (Figure 1C). Other pathogenic alterations were

identified in BRCA1 (n = 1), ATM (n = 3), ATR (n = 1), CDK12 (n = 2),

CHEK2 (n = 2), FANCD2 (n = 1). The remaining 16 patients (53%) were

genetically DDRp, of which in five patients a VUS was detected in

one of the predefined DDR genes (Table S4). Six patients (20%)

showed a molecular signature of AVPC (AVPC-MS) with inactivation

of ≥2 associated genes (TP53, RB1, PTEN), of which subject 16 was

also BRCA2 deficient. Two patients (7%) showed inactivation of one or

more MMR genes and one of them was also DDRd. Microsatellite

instability was detected in both patients. Out of the 48 alterations

depicted in Figure 1C, 35 (73%) were proven to be somatic. Three

mutations in BRCA2 and one in CHEK2 were germline. For the

remaining nine alterations the germline status was not assessed

(Table S4). Study subject 18 had a loss of one allele of BRCA2 and the

zygosity of the BRCA2 loss of study subject 33 was unknown. All other

copy number variants were homozygous deletions.

3.3 | Efficacy of carboplatin-based chemotherapy
in molecular subtypes of mCRPC

3.3.1 | Baseline comparison DDRd vs DDRp
subgroups

At baseline, clinical characteristics and demographics did not differ sig-

nificantly between the DDRd and DDRp subgroups (Table S5). Median

PSA and ALP at start of therapy were higher in the DDRd subgroup

when compared to DDRp patients (PSA: 300 vs 100 μg/L, P = .031;

ALP 278 vs 146 U/L, P = .036, respectively). In both subgroups,

cabazitaxel was the preferred combination partner of platinum

(Table S2). For the BRCA2mut subgroup, the median time from initial

diagnosis to initiation of platinum-based therapy was 30 months, when

compared to 56 months for the BRCA2 wild-type (BRCA2wt) subgroup

(P = .037). At baseline, these subgroups were not statistically different.

3.3.2 | Outcome

Of the DDRd patients, 10 (71%) had a PSA50 response when com-

pared to 5 (31%) in the DDRp subgroup (P = .028, Figure 2). All other

PSA outcome metrics also demonstrated a more beneficial response

to carboplatin for the DDRd subgroup (Table 1). Best radiographic

response according to RECIST 1.1 criteria (Table 2) and OS did not

statistically differ between the DDRd and DDRp subgroups (OS 8.4 vs

7.0 months, respectively; hazard ratio [HR] 1.720; 95% confidence

interval [CI] 0.732-4.043; P = .214, Figure 3).

Next, we focussed on the BRCA2 status of the 30 molecularly pro-

filed patients and compared the seven BRCA2mut patients to the

23 BRCA2wt patients. All outcome measures significantly favoured the

BRCA2mut subgroup (Table 1). All patients in the BRCA2mut subgroup

witnessed a PSA50 response, while this was 35% in the BRCA2wt sub-

group, P = .006. Moreover, all seven BRCA2mut patients showed a

radiographic partial response when compared to 16% in the BRCA2wt

subgroup (P < .001, Table 2). Median OS from start of carboplatin was

almost 14 months longer for the BRCA2mut subgroup when com-

pared to the BRCA2wt subgroup (21.1 vs 7.3 months; HR 3.588; 95%

CI 1.051-12.248; P = .041, Figure 3). In a multivariable analyses

BRCA2 status emerged as the independent predictor for PSA response

(Table S6).

Of the 15 patients in the Radboudumc cohort with a PSA50, 27%

(n = 4) were defined as exceptional responders, with a PSA90

response. All harboured at least one pathogenic BRCA2 aberration.

Their median radiographic progression-free survival was 6 months

(range 3-10 months). Subject 18 did not classify as BRCA2mut based

on the routine next-generation sequencing, but a loss of heterozygos-

ity of BRCA2 was implied. An additional genetic analyses with multi-

plex ligation-dependent probe amplification confirmed a loss of one

allele of BRCA2.
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TABLE 1 PSA response to carboplatin, by DDR and BRCA2 status

Number of patients (valid %) or

median [IQR]

Number of patients (valid %) or

median [IQR]

DDRd, N = 14 DDRp, N = 16 P value

BRCA2mut,

N = 7

BRCA2wt,

N = 23 P value

Maximal PSA change (%) −70 [−99 to +13] 8 [−53 to +133] .013 −99 [−99 to −85] 7 [−66 to +103] <.001

Patients with >50% maximal PSA decline 10 (71.4) 5 (31.3) .028 7 (100.0) 8 (34.8) .006

Patients with >90% maximal PSA decline 4 (28.6) 0 (0.0) .037 4 (57.1) 0 (0.0) .001

PSA change at 12 weeks (%) −66 [−97 to −14] 0 [−61 to +186] .021 −96 [−99 to −62] 0 [−65 to +131] .002

Patients with >50% PSA decline at

12 weeks

10 (71.4) 3 (21.4) .008 7 (100.0) 6 (28.6) .001

Abbreviations: BRCA2mut, inactivated BRCA2; BRCA2wt, BRCA2 wild-type subgroup; DDR, DNA damage repair; DDRd, DDR deficient; DDRp, DDR profi-

cient; IQR, interquartile range; PSA, prostate-specific antigen. Values in bold are significant (P < .05).

TABLE 2 Best radiographic response
to carboplatin, by DDR, BRCA2 and
AVPC status

Subgroups Best radiographic responsea Number of patients (valid %) P value

DDRd vs DDRp Partial response 7 (58.3) vs 3 (21.4) .122

Stable disease 2 (16.7) vs 2 (14.3)

Progressive disease 3 (25.0) vs 9 (64.3)

BRCA2mut vs BRCA2wt Partial response 7 (100.0) vs 3 (15.8) <.001

Stable disease - vs 4 (21.1)

Progressive disease - vs 12 (63.2)

AVPC vs non-AVPC Partial response 3 (50.0) vs 7 (35.0) .690

Stable disease - vs 4 (20.0)

Progressive disease 3 (50.0) vs 9 (45.0)

Abbreviations: AVPC, aggressive-variant prostate cancer; BRCA2mut, inactivated BRCA2; BRCA2wt,

BRCA2 wild-type subgroup; DDR, DNA damage repair; DDRd, DDR deficient; DDRp, DDR proficient.

Values in bold are significant (P < .05).

According to Response Evaluation Criteria in Solid Tumours (RECIST1.1).
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3.3.3 | Aggressive variant prostate cancer

We identified six AVPC patients, defined by molecular signatures,

with inactivation of TP53, RB1 and PTEN (n = 1), TP53 and RB1 (n = 2),

TP53 and PTEN (n = 2) and PTEN and RB1 (n = 1). These six AVPC

patients were of younger age compared to the 24 patients in the non-

AVPC subgroup (median 57 vs 63 years, P = .029). Other baseline

characteristics were comparable (Table S7). The duration of platinum-

based treatment did not differ significantly (Table S8).

PSA responses to carboplatin-based chemotherapy were compa-

rable between the AVPC and the non-AVPC subgroup (Table S9). In

both groups, half of the patients had a PSA50 response to treatment

with carboplatin. The AVPC subgroup showed a 1.8-month numerical

median OS benefit over the non-AVPC subgroup (9.1 vs 7.3 months,
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respectively; Figure S1). Best radiographic response was comparable

between both subgroups (Table 2). These comparable responses to

carboplatin-based chemotherapy are in contrast with the tendency of

AVPC patients to show worse outcome metrics to standard of care

therapy, and a poorer survival compared to non-AVPC patients.

3.4 | Responses in patients with both PARP
inhibitors and platinum-based therapy

In the scope of registration of PARPi for mCRPC, it is key to have

insight in possible cross-resistance between platinum compounds and

PARPi. Here, we evaluated response rates to carboplatin and PARPi in

a small subcohort; nine patients from the Radboudumc cohort were

treated with PARPi during the course of their disease, all subsequent or

prior to treatment with carboplatin (Figure 4A). Subject 27 was

excluded from the analyses due to a lack of adequate follow-up after

PARPi. The remaining eight patients harboured alterations in BRCA2

(n = 4), ATM (n = 2), PPP2R2A (n = 1, not in predefined DDR panel) and

CDK12 (n = 1). Subject 16 harboured pathogenic alterations in BRCA2

as well as ATM. All four BRCA2mut patients with initial PSA50 response

to carboplatin, also showed a PSA50 response to subsequent PARPi

(Figure 4B). Moreover, every BRCA2mut patient had a radiographic

response to initial platinum therapy and three out of four also to subse-

quent PARPi therapy. Notably, study Subject 16 (BRCA2 loss and ATM

frame shift mutation) showed outstanding response to consecutively

carboplatin, PARPi and carboplatin rechallenge, with maximum PSA

decline of 99%, 83% and 82%, respectively. Radiographically, partial

response was observed following all three therapies in this patient.

We assessed the literature for additional patient data, and

extended the inclusion period for patients within our institute for an

exploratory analysis of cross-resistance between these compounds

(Table S10). In total, we could identify 18 patients, of which 2 patients

from our institute who received their first dose of platinum-based che-

motherapy after the inclusion period of our main study. PSA response

was missing for one patient and radiographic response for four. Eight

patients (47%) showed differential responses, showing either PSA50

responsiveness to platinum or PARPi, but not to the second agent.

There were five patients (29%) with concordance in nonresponsiveness

and four (24%) with concordance in responsiveness, of those all four

BRCA2mut patients treated with platinum first and subsequently with

PARPi. In the reverse sequence (PARPi followed by platinum-based

chemotherapy) none of the five patients with response to PARPi

responded to sequential platinum-based chemotherapy, while 43%

(3/7) of the patients without response to PARPi responded to platinum.

Only one of the four patients with an ATM mutation had a PSA50

response to PARPi and none had such response to platinum.

4 | DISCUSSION

We have described the real-world use and outcomes of treatment

with platinum compounds in mCRPC patients in the Netherlands.

A molecularly unselected patient population of the nationwide Dutch

CAPRI cohort yielded low response rates to platinum-based treat-

ment. The CAPRI and the Radboudumc cohort were considered

unmatched populations. It cannot be excluded that differences in

response to platinum-based chemotherapy might be influenced by

confounders like age at start of platinum-based therapy or the combi-

nation partner of the platinum agent. In the Radboudumc cohort, we

specifically investigated the response of patients with or without

DNA damage repair defects or a molecular signature of AVPC. These

results supported existing evidence on antitumour activity of platinum

combination therapy in patients with DDRd prostate cancer. More

than 70% of the patients in the DDRd subgroup demonstrated a bio-

chemical response to carboplatin. Half of the DDRd patients

harboured a pathogenic BRCA2 alteration, and particularly these

patients benefitted from carboplatin-based chemotherapy as shown

by higher objective radiographic response rates and longer OS on top

of a PSA50 response for all BRCA2mut patients. Despite their poor

prognosis, AVPC patients had comparable outcomes as non-AVPC

patients, suggesting a possible benefit of platinum-based chemo-

therapy.

DDRd, and particularly genes associated with homologous

recombination, are suggested as plausible biomarkers for platinum

responses in mCRPC.10 A recent study by Mota et al. described a

higher proportion of PSA50 responses to platinum-based chemother-

apy in the DDRd group when compared to DDRp patients.11 In our

study, a similar outcome was found, although the biochemical

response of DDRd patients to carboplatin was largely driven by the

BRCA2mut subgroup, with all seven BRCA2mut patients showing a

PSA50 response. In comparison, four out of six (67%) BRCA2mut

patients in the study of Mota et al. had a similar response. This excep-

tional responsiveness of BRCA2 inactivated patients to platinum-

based chemotherapy was previously described in a case series of

three patients by Cheng et al, supported by an in vitro and in vivo

study.8,9 We strongly underline these findings, with all BRCA2mut

patients in our study also demonstrating an objective radiological

response with clinical benefit suggested by a significant longer OS

witnessed in this subgroup.

Novel opportunities for patients with mCRPC have arisen due to

advances in molecular characterisation and personalised medicine.

One avenue is on targeting DDRd. Besides platinum compounds,

PARPi have shown very promising results in Phase 1 and 2 trials.21-23

Recently, these findings were validated in the Phase III PROfound

trial.2 Patients with BRCA2 alterations seemed to benefit most from

the inhibition and trapping of the PARP-1 and PARP-2 enzymes.

Through the inhibition of repair of single strand DNA breaks, PARPi

add to the formation of lethal double strand breaks, in the presence of

DDRd, leading to apoptosis and programmed cell death. The potential

benefit of the combination of PARPi and platinum compounds over

PARPi alone appears encouraging; however, this is not yet investi-

gated in mCRPC.24

At this moment, the question remains how-to best sequence plat-

inum compounds with PARPi in DDRd patients with mCRPC. Particu-

larly, after registration of PARP inhibitors, it is expected that PARPi
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will be favoured over platinum compounds. Issues of cross-resistance

need to be adequately addressed. We evaluated responses to these

therapies in patients from our institute and from Mota et al.11 Only

four patients had a PSA50 response to both therapies, all BRCA2

mutated and treated with platinum first and subsequently PARPi. In

the reverse sequence (PARPi – platinum), all patients who responded

to PARPi did not respond to platinum compounds, but almost half of

the nonresponders did remain responsive to platinum. Notably, ATM

mutated patients yielded low response to both PARPi and platinum-

based chemotherapy. This is in line with early data suggesting that

response to platinum and PARPi is more commonly seen in BRCA2

mutated patients when compared to ATM mutated patients.25 Our

combined sample size of 18 patients was relatively small and insuffi-

cient to draw conclusions on the order of applying these two types of

therapy. More data are needed, preferably from randomised trials

with platinum-based chemotherapy vs PARPi with crossover design,

to provide recommendations on optimal treatment planning on a

DDRd gene-specific basis.

In end-stage castration-resistant disease, patients commonly

develop poor prognostic disease features associated with AVPC, for

which effective therapy is much sought after. Recently, Corn et al

have shown that multimodality chemotherapy of carboplatin in combi-

nation with cabazitaxel, improved radiographic progression-free sur-

vival, but not OS, over cabazitaxel alone in a molecularly unselected

patient cohort.14 Post hoc analyses suggested that AVPC-MS-positive

patients derived most benefit from the combination, indicated by both

radiographic progression-free survival (2.2 vs 6.0 months, P < .05) and

OS benefit (9.9 vs 17.4 months, P < .05). Our results were in line with

this study, demonstrating comparable OS and PSA responses for

AVPC and non-AVPC patients treated with carboplatin. In contrast to

our study, no clear benefit for BRCA2-deficient patients was found in

the study by Corn et al, possibly due to challenges and difficulties in

utilising ctDNA for the detection of the full spectrum of BRCA2 alter-

ations, particularly deletions.

AVPC and DDRd patients may both benefit from platinum-based

chemotherapy trough a similar method of action. TP53 and PTEN are

part of the AVPC-MS. P53 is a mediator of DDR, since it promotes

cell cycle arrest and provides time for the DDR machinery to repair

the damage, or induces senescence/cell death in response to DNA

damage.26,27 Although not yet confirmed in a clinical setting, PTEN

alterations in an in vitro setting appear to influence homologous

repair, in such a way that PTEN-deficient prostate cancer cells are sus-

ceptible to treatment with PARPi.28,29 Moreover, a preclinical study

demonstrated in vitro and in vivo, that a senescence response to

PARPi triggered by PTEN deficiency in prostate cancer cells, trans-

formed to apoptosis in case of additional p53 dysfunction.30 These

two molecular subtypes may both have an increased vulnerability to

the DNA crosslinking and strand breakage of platinum compounds

through the accumulation of cell damage caused by the inability to

correctly restore the DNA sequence.

Recently, SLFN11 expression has also been suggested as a

predictive biomarker for response to DNA-damaging agents. This

DNA/RNA helicase, overexpressed in approximately 45% of the

mCRPC tumours, was associated with a longer progression-free sur-

vival in CRPC patients upon treatment with platinum-based chemo-

therapy in a recent study by Conteduca et al..31 In a multivariable

analysis it emerged as an independent predictor for a longer

progression-free survival; no detailed breakdown on gene level was

given of the 17 patients with DDRd, therefore it is hard to interpret

whether SLFN11 may outperform BRCA2. Homologous recombina-

tion deficiency signatures may also outperform BRCA2 as predictive

biomarker, as BRCA1/2 may be silenced by methylation or posttrans-

lational processes. Approximately 30% of mCRPC patients with a

homologous recombination deficiency signature lacked alterations in

BRCA2 and other key homologous recombination genes.32 Also, the

neutrophil to lymphocyte ratio, a well-known prognostic factor in

mCRPC was shown to be independently associated with worse out-

comes after platinum therapy.33

Our results should be viewed in the context of several limitations.

The retrospective nature of this study allows for selection bias. No

prior power analysis was performed, and the sample size is based on

consecutively enrolling patients treated with platinum-based chemo-

therapy. The size of the cohort and lack of randomisation allow base-

line imbalances such as higher PSA and ALP levels for DDRd patients,

which might influence the response measures. Genetic analysis was

performed by three different next generation sequencing platforms.

We tried to mitigate differences in pathogenicity reporting, by

reassessing the pathogenicity from third-party providers, which was

performed in a blinded manner by an experienced clinical molecular

biologist. Due to the nature of our retrospective study, which lacked a

comparator arm without use of platinum chemotherapy, the specified

OS results and intergroup comparison were in the context of DDRd

gene-specific prognosis.

5 | CONCLUSIONS

Our study adds to a body of evidence that platinum compounds are

beneficial for mCRPC patients pre-selected for BRCA2 alterations.

These data are of importance to help protect patients from unneces-

sary toxicity and adverse events, with platinum-based drugs commonly

administered as a last resort therapy. The individual benefit of infre-

quent alterations in DNA damage repair genes, including PALB2, BRIP1

and others, to platinum chemotherapy is unknown. Carboplatin, when

given prior to PARPi, did not appear to diminish efficacy to subsequent

PARPi, however more data is required to gain insight on cross-resis-

tance. AVPC patients also seemed to benefit from platinum compounds

indicated by comparable responses for this prognostic poor subgroup.

This study provides novel data which may help guide the path towards

improved precision medicine for patients with mCRPC.
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