72 research outputs found

    An open-label, dose-escalation study to evaluate the safety, tolerability, pharmacokinetics, and pharmacodynamics of single doses of GSK2586881 in participants with pulmonary arterial hypertension

    Get PDF
    Arterial hypertension; Hemodynamics; Renin‐angiotensin systemHipertensión arterial; Hemodinámica; Sistema renina-angiotensinaHipertensió arterial; Hemodinàmica; Sistema renina-angiotensinaPreclinical and early clinical studies suggest that angiotensin-converting enzyme type 2 activity may be impaired in patients with pulmonary arterial hypertension (PAH); therefore, administration of exogenous angiotensin-converting enzyme type 2 (ACE2) may be beneficial. This Phase IIa, multi-center, open-label, exploratory, single-dose, dose-escalation study (NCT03177603) assessed the potential vasodilatory effects of single doses of GSK2586881 (a recombinant human ACE2) on acute cardiopulmonary hemodynamics in hemodynamically stable adults with documented PAH who were receiving background PAH therapy. Successive cohorts of participants were administered a single intravenous dose of GSK2586881 of 0.1, 0.2, 0.4, or 0.8 mg/kg. Dose escalation occurred after four or more participants per cohort were dosed and a review of safety, tolerability, pharmacokinetics, and hemodynamic data up to 24 h postdose was undertaken. The primary endpoint was a change in cardiopulmonary hemodynamics (pulmonary vascular resistance, cardiac index, and mean pulmonary artery pressure) from baseline. Secondary/exploratory objectives included safety and tolerability, effect on renin-angiotensin system peptides, and pharmacokinetics. GSK2586881 demonstrated no consistent or sustained effect on acute cardiopulmonary hemodynamics in participants with PAH receiving background PAH therapy (N = 23). All doses of GSK2586881 were well tolerated. GSK2586881 was quantifiable in plasma for up to 4 h poststart of infusion in all participants and caused a consistent and sustained reduction in angiotensin II and a corresponding increase in angiotensin (1–7) and angiotensin (1–5). While there does not appear to be a consistent acute vasodilatory response to single doses of GSK2586881 in participants with PAH, the potential benefits in terms of chronic vascular remodeling remain to be determined

    Modeling mitochondrial dysfunctions in the brain: from mice to men

    Get PDF
    The biologist Lewis Thomas once wrote: “my mitochondria comprise a very large proportion of me. I cannot do the calculation, but I suppose there is almost as much of them in sheer dry bulk as there is the rest of me”. As humans, or indeed as any mammal, bird, or insect, we contain a specific molecular makeup that is driven by vast numbers of these miniscule powerhouses residing in most of our cells (mature red blood cells notwithstanding), quietly replicating, living independent lives and containing their own DNA. Everything we do, from running a marathon to breathing, is driven by these small batteries, and yet there is evidence that these molecular energy sources were originally bacteria, possibly parasitic, incorporated into our cells through symbiosis. Dysfunctions in these organelles can lead to debilitating, and sometimes fatal, diseases of almost all the bodies’ major organs. Mitochondrial dysfunction has been implicated in a wide variety of human disorders either as a primary cause or as a secondary consequence. To better understand the role of mitochondrial dysfunction in human disease, a multitude of pharmacologically induced and genetically manipulated animal models have been developed showing to a greater or lesser extent the clinical symptoms observed in patients with known and unknown causes of the disease. This review will focus on diseases of the brain and spinal cord in which mitochondrial dysfunction has been proven or is suspected and on animal models that are currently used to study the etiology, pathogenesis and treatment of these diseases

    Alterations in Energy/Redox Metabolism Induced by Mitochondrial and Environmental Toxins: A Specific Role for Glucose-6-Phosphate-Dehydrogenase and the Pentose Phosphate Pathway in Paraquat Toxicity

    Get PDF
    Parkinson’s disease (PD) is a multifactorial disorder with a complex etiology including genetic risk factors, environmental exposures, and aging. While energy failure and oxidative stress have largely been associated with the loss of dopaminergic cells in PD and the toxicity induced by mitochondrial/environmental toxins, very little is known regarding the alterations in energy metabolism associated with mitochondrial dysfunction and their causative role in cell death progression. In this study, we investigated the alterations in the energy/redox-metabolome in dopaminergic cells exposed to environmental/mitochondrial toxins (paraquat, rotenone, 1-methyl-4-phenylpyridinium [MPP+], and 6-hydroxydopamine [6-OHDA]) in order to identify common and/or different mechanisms of toxicity. A combined metabolomics approach using nuclear magnetic resonance (NMR) and direct-infusion electrospray ionization mass spectrometry (DI-ESI-MS) was used to identify unique metabolic profile changes in response to these neurotoxins. Paraquat exposure induced the most profound alterations in the pentose phosphate pathway (PPP) metabolome. 13C-glucose flux analysis corroborated that PPP metabolites such as glucose-6-phosphate, fructose-6-phosphate, glucono-1,5-lactone, and erythrose-4-phosphate were increased by paraquat treatment, which was paralleled by inhibition of glycolysis and the TCA cycle. Proteomic analysis also found an increase in the expression of glucose-6-phosphate dehydrogenase (G6PD), which supplies reducing equivalents by regenerating nicotinamide adenine dinucleotide phosphate (NADPH) levels. Overexpression of G6PD selectively increased paraquat toxicity, while its inhibition with 6-aminonicotinamide inhibited paraquat-induced oxidative stress and cell death. These results suggest that paraquat “hijacks” the PPP to increase NADPH reducing equivalents and stimulate paraquat redox cycling, oxidative stress, and cell death. Our study clearly demonstrates that alterations in energy metabolism, which are specific for distinct mitochondiral/environmental toxins, are not bystanders to energy failure but also contribute significant to cell death progression

    Mechanisms of neurotoxicity and neuroprotection in 6-OHDA models of Parkinson's disease

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Adaptive study design to assess effect of TRPV4 inhibition in patients with chronic cough

    Get PDF
    Objective Airway sensory nerves involved in the cough reflex are activated by adenosine triphosphate (ATP) agonism of P2X purinoceptor 3 (P2X3) receptors. Transient receptor potential vanilloid 4 (TRPV4) channel activation causes ATP release from airway cells, and it is hypothesised that a TRPV4-ATP-P2X3 axis contributes to chronic cough. An adaptive study was run to determine if TRPV4 inhibition, using the selective TRPV4 channel blocker GSK2798745, was effective in reducing cough. Methods A two-period randomised, double blinded, placebo-controlled crossover study was designed with interim analyses for futility and sample size adjustment. Refractory chronic cough patients received either GSK2798745 or placebo once daily for 7 days with a washout between treatments. Pharmacokinetic samples were collected for analysis of GSK2798745 at end of study. The primary end-point was total cough counts assessed objectively during day-time hours (10 h) following 7 days of dosing. Results Interim analysis was performed after 12 participants completed both treatment periods. This showed a 32% increase in cough counts on Day 7 for GSK2798745 compared to placebo; the pre-defined negative criteria for the study were met and the study was stopped. At this point 17 participants had been enrolled (mean 61 years; 88% female), and 15 had completed the study. Final study results for posterior median cough counts showed a 34% (90% credible interval: −3%, +85%) numerical increase for GSK2798745 compared to placebo. Conclusion There was no evidence of an anti-tussive effect of GSK2798745. The study design allowed the decision on lack of efficacy to be made with minimal participant exposure to the investigational drug
    corecore