
Alterations in Energy/Redox Metabolism
Induced by Mitochondrial and

Environmental Toxins: A Specific
Role for Glucose-6-Phosphate-
Dehydrogenase and the Pentose

Phosphate Pathway in Paraquat Toxicity
The Harvard community has made this

article openly available.  Please share  how
this access benefits you. Your story matters

Citation Lei, Shulei, Laura Zavala-Flores, Aracely Garcia-Garcia, Renu
Nandakumar, Yuting Huang, Nandakumar Madayiputhiya, Robert C.
Stanton, Eric D. Dodds, Robert Powers, and Rodrigo Franco. 2014.
“Alterations in Energy/Redox Metabolism Induced by Mitochondrial
and Environmental Toxins: A Specific Role for Glucose-6-Phosphate-
Dehydrogenase and the Pentose Phosphate Pathway in Paraquat
Toxicity.” ACS Chemical Biology 9 (9): 2032-2048. doi:10.1021/
cb400894a. http://dx.doi.org/10.1021/cb400894a.

Published Version doi:10.1021/cb400894a

Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:17295712

Terms of Use This article was downloaded from Harvard University’s DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at http://

http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Alterations%20in%20Energy/Redox%20Metabolism%20Induced%20by%20Mitochondrial%20and%20Environmental%20Toxins:%20A%20Specific%20Role%20for%20Glucose-6-Phosphate-Dehydrogenase%20and%20the%20Pentose%20Phosphate%20Pathway%20in%20Paraquat%20Toxicity&community=1/4454685&collection=1/4454686&owningCollection1/4454686&harvardAuthors=ed9576a00bc2301d37037997383606d8&department
http://nrs.harvard.edu/urn-3:HUL.InstRepos:17295712
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA


nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA


Alterations in Energy/Redox Metabolism Induced by Mitochondrial
and Environmental Toxins: A Specific Role for Glucose-6-Phosphate-
Dehydrogenase and the Pentose Phosphate Pathway in Paraquat
Toxicity
Shulei Lei,† Laura Zavala-Flores,§,∥ Aracely Garcia-Garcia,§,∥ Renu Nandakumar,‡ Yuting Huang,†

Nandakumar Madayiputhiya,‡ Robert C. Stanton,⊥ Eric D. Dodds,† Robert Powers,*,†,§

and Rodrigo Franco*,§,∥

Departments of †Chemistry and ‡Biochemistry, §Redox Biology Center, and ∥School of Veterinary Medicine and Biomedical Sciences,
University of NebraskaLincoln, Lincoln, Nebraska 68588, United States
⊥Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02115, United States

*S Supporting Information

ABSTRACT: Parkinson’s disease (PD) is a multifactorial disorder with a complex etiology including genetic risk factors,
environmental exposures, and aging. While energy failure and oxidative stress have largely been associated with the loss of
dopaminergic cells in PD and the toxicity induced by mitochondrial/environmental toxins, very little is known regarding the
alterations in energy metabolism associated with mitochondrial dysfunction and their causative role in cell death progression. In
this study, we investigated the alterations in the energy/redox-metabolome in dopaminergic cells exposed to environmental/
mitochondrial toxins (paraquat, rotenone, 1-methyl-4-phenylpyridinium [MPP+], and 6-hydroxydopamine [6-OHDA]) in order
to identify common and/or different mechanisms of toxicity. A combined metabolomics approach using nuclear magnetic
resonance (NMR) and direct-infusion electrospray ionization mass spectrometry (DI-ESI-MS) was used to identify unique
metabolic profile changes in response to these neurotoxins. Paraquat exposure induced the most profound alterations in the
pentose phosphate pathway (PPP) metabolome. 13C-glucose flux analysis corroborated that PPP metabolites such as glucose-6-
phosphate, fructose-6-phosphate, glucono-1,5-lactone, and erythrose-4-phosphate were increased by paraquat treatment, which
was paralleled by inhibition of glycolysis and the TCA cycle. Proteomic analysis also found an increase in the expression of
glucose-6-phosphate dehydrogenase (G6PD), which supplies reducing equivalents by regenerating nicotinamide adenine
dinucleotide phosphate (NADPH) levels. Overexpression of G6PD selectively increased paraquat toxicity, while its inhibition
with 6-aminonicotinamide inhibited paraquat-induced oxidative stress and cell death. These results suggest that paraquat
“hijacks” the PPP to increase NADPH reducing equivalents and stimulate paraquat redox cycling, oxidative stress, and cell death.
Our study clearly demonstrates that alterations in energy metabolism, which are specific for distinct mitochondiral/
environmental toxins, are not bystanders to energy failure but also contribute significant to cell death progression.

Parkinson’s disease (PD) has been presented as a complex and
heterogeneous disease with unclear pathological and etiological
mechanisms. Since epidemiological data suggest an association
between PD and environmental toxicant exposure, the
multifactorial etiology of PD has been now indicated to include
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environmental toxicity in addition to mutations and aging as
major risk factors.1 To date, there is no experimental model
that recapitulates all biochemical, pathological, or symptomatic
aspects of PD. A number of toxicological models have been
established to study dopaminergic cell death, which address the
role of oxidative stress, mitochondrial dysfunction, and
dopamine metabolism. Recent studies have demonstrated that
environmental exposure to the pesticides paraquat or rotenone
could increase the risk of developing PD.2 In addition, a
dysfunction in the electron transport chain (ETC) has been
found in PD brains. Thus, inhibitors of complex I activity such
as methyl-4-phenylpyridinium (MPP+)/1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP) and rotenone are used to
induce mitochondrial dysfunction in dopaminergic cells.3

Oxidative stress in PD is also associated with the pro-oxidant
metabolism of dopamine. When injected into the SNpc, the
hydroxylated analogue of dopamine, 6-hydroxydopamine (6-
OHDA), induces degeneration of the nigrostriatal dopaminer-

gic system by oxidative damage generated via its auto-
oxidation.4

Exposures to paraquat, rotenone, MPP+/MPTP or 6-OHDA
have been largely used in vitro and in vivo as experimental PD
models.3 However, distinct mechanisms are known to mediate
their toxic effects. For example, even though paraquat and 6-
OHDA are known to induce oxidative stress, the former is
known to act as a generator of mitochondrial superoxide
anion,5 while 6-OHDA’s auto-oxidation triggers the formation
of reactive quinones.6 Thus, both similar and different signal
transduction pathways have been described to regulate the
toxicity of both neurotoxins.7−9 Similarly, while the complex I
inhibitors rotenone and MPP+ are thought to exert their toxic
effects by similar mechanisms, other studies have shown that
MPP+/MPTP and rotenone toxicity is mediated by mecha-
nisms independent from complex I inhibition10 and the
generation of ROS.8,11 Furthermore, recent reports have
demonstrated that rotenone and MPP+ actually exert distinct
alterations in cellular metabolism and activation of signaling

Figure 1. Cell death is triggered irreversibly after 24 h of exposure to a toxic paraquat (PQ) concentration. (A) Human dopaminergic neuroblastoma
cells (SK-N-SH) were exposed to paraquat (0.5 mM, PQ), MPP+ (2.5 mM), rotenone (4 μM) or 6-OHDA (50 μM). Phase contrast (20×) images
were taken at the time indicated. Insets represent a 2.3× magnification from the area indicated (broken line squares). (B−C) Cells were exposed to
paraquat (0.5 mM) or MPP+ (2.5 mM) for 24 h, and then, (a) cells were incubated with fresh medium for 48 h; (b) cells were kept with the
neurotoxin for additional 48 h (72 h total); or (bi) media was exchanged with fresh medium + neurotoxin for additional 48 h. Cell death was
quantified after 72 h using PI uptake as a marker for plasma membrane integrity. Data in C represent means ± SE of 3 independent experiments. *p
< 0.05, 72 h vs 24 h treatments. (D) Cell death induced by different periods of incubation with paraquat evaluated at 72 h after treatment.
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cascades, supporting the idea that their toxicity is mediated by
distinct mechanisms.12 Because these different toxicological
models address a specific hallmark of PD, that is, mitochondrial
dysfunction, oxidative stress, and dopamine toxic metabolism,
understanding the molecular mechanisms that mediate their
toxicity is of great importance.
In the brain, both energy metabolism and bioenergetics are

tightly coupled. Glucose is the obligatory energy substrate of
the adult brain. Neurons primarily metabolize glucose via the
pentose phosphate pathway (PPP) to provide reducing
equivalents required to maintain antioxidant defenses via the
production of nicotinamide adenine dinucleotide phosphate
(NADPH).13 Dopaminergic neurons in the substantia nigra
consume a significant amount of energy during their pace-
making activity, which leads to increased levels of basal
oxidative stress.14 Energy failure associated with mitochondrial
dysfunction is the hallmark of PD. Dysfunction of the electron
transport chain (ETC), tricarboxylic acid cycle (TCA or Krebs
cycle), and oxidative phosphorylation (OXPHOS) has been
reported in PD brains.15,16 A decrease in glucose metabolism
and abnormally elevated lactate levels has also been reported in

PD patients.17−19 In addition, down-regulation of PPP enzymes
and a failure to increase the antioxidant reserve is an early event
in the pathogenesis of sporadic PD.20 While energy failure has
been largely associated with the loss of dopaminergic cells in
PD and the toxicity induced by mitochondrial/environmental
toxins, very little is known regarding the alterations in energy
metabolism associated with mitochondrial dysfunction and
their causative role in cell death progression.
Biochemical biomarkers represent changes which can be

indicative of disease mechanisms.21 Most of the studies so far
regarding the identification of biochemical biomarkers for PD
have been focused primarily on proteomic studies.22 While the
identification of biomarkers from biofluids or neuroimaging are
invaluable for diagnosing PD, metabolomics can also provide
insights into the molecular mechanisms of disease development
and progression for the development of effective and
personalized treatments of PD. In this study, we aimed first
to identify the specific alterations in the metabolome of
dopaminergic cells induced by exposure to environmental/
mitochondrial toxins to reveal novel molecular mechanism
involved in dopaminergic cell death, and second, to establish a

Figure 2. Alterations in the metabolome induced by exposure to neurotoxins. Cells were treated with paraquat (0.5 mM), rotenone (4 μM), MPP+

(2.5 mM), or 6-OHDA (50 μM) for 24 h. LDA plots were generated from 1D 1H NMR spectra (A), DI-ESI-MS spectra (B), or the combined 1D
1H NMR and DI-ESI-MS data sets (C). The group separation in a LDA plot identifies the similarity or difference between the cellular metabolomes
of cells treated with the different toxins. The ellipsoids correspond to the 95% confidence limits from a normal distribution for each cluster. The
associated dendrograms were generated based on the 3D MB-PCA scores and were used to further visualize the class separation in the LDA plots.
The statistical significance of the class separation is indicated by the p-value listed at each node. (D) Cell death was evaluated at 48 h after exposure
to the indicated neurotoxin using PI. Data in A−C represent means of 6 independent samples. Data in D represent means ± SE of 3 independent
experiments.
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causative role for changes in energy/redox metabolism in
dopaminergic cell death. Our data shows that paraquat,
rotenone, MPP+, and 6-OHDA elicit major and distinct
metabolic alterations with significant differences between
them. Paraquat selectively up-regulates the pentose phosphate
pathway (PPP) and glucose-6-phosphate dehydrogenase
(G6PD) levels, the rate-limiting enzyme of the PPP, which
was paralleled by a concomitant down-regulation of glycolysis
and the TCA cycle. G6PD was shown to selectively regulate
paraquat-induced oxidative stress and apoptotic cell death.
These findings provide a valuable insight into the neurotoxicity
mechanism of paraquat and demonstrate the importance of
alterations in energy/redox metabolism in environmental
toxicity. Our results reveal that alterations induced by
environmental/mitochondrial toxins are not bystanders to
energy failure, but instead, contribute significantly to cell death
progression.

■ RESULTS AND DISCUSION

Cell Death Is Irreversible after 24 h of Exposure to
Toxic Paraquat Concentrations. Exposures to environ-
mental/mitochondrial toxins are widely used to study
dopaminergic cell death associated with PD. We observed
that the exposure of dopaminergic cells to a toxic dose of
paraquat (>0.5 mM) for 24 h, followed by a 48 h incubation
period in media without paraquat, induced a similar degree of
cell death relative to a continuous 72 h exposure to this toxin
(Figure 1A−C). When the medium was exchanged after 24 h of
treatment with paraquat with fresh medium also containing
paraquat, no additional toxicity was observed compared to
either a 24 h exposure and medium removal (wash-out) or a
continuous 72 h treatment with paraquat (Figure 1B).
Interestingly, MPP+- (Figure 1A−C), 6-OHDA- and rote-
none-induced cell death (Figure 1A) required their continuous
presence for 72 h in order to induce a comparable degree of cell
death to that induced by paraquat treatment for only 24 h
followed by a 48 h incubation period with fresh medium
(Figure 2C). These results suggested that a significant
biochemical alteration occurs in cells treated with paraquat
for 24 h that irreversibly commits the cells to undergo cell
death.
Toxicity of Environmental/Mitochondrial Toxins Is

Associated with Changes in Their Metabolome Prior to
Cell Death. A combination of analytical techniques provides
an enhanced view of the metabolome since each individual
method is typically limited to detecting only a subset of
metabolites.23 For the first time, we integrated positive-ion
direct infusion electrospray ionization mass spectrometry (DI-
ESI-MS) and (one-dimensional) 1D 1H NMR techniques along
with an integrated chemometrics approach to characterize the
alterations in the metabolome induced by neurotoxins. The

Linear Discriminant Analysis (LDA) plots and the three-
dimensional (3D) Multiblock Principle Component Analysis
(MB-PCA) dendrograms for the 1D 1H NMR spectra, DI-ESI-
MS spectra, and the combined NMR and DI-ESI-MS data set
are shown in Figures 2A, B, and C, respectively. The LDA plot
is used to project a 3D MB-PCA scores plot in two-dimensions
with an orientation that captures the maximal between class
separations. The relative clustering of each group in the LDA
plot is an indicator of the similarity in the spectral data, and,
correspondingly, the cellular metabolome. The 3D MB-PCA
dendrograms provides an alternative approach for quantifying
group similarities by determining the statistical significance of
the group separation in the MB-PCA scores plots. The fact that
the clustering patterns in the LDA plots differ slightly between
the 1D 1H NMR (Figure 2A) and DI-ESI-MS (Figures 2B)
data sets is not unexpected since the two methods highlight
different subregions of the metabolome. More importantly, the
LDA plot of the combined NMR and DI-ESI-MS data set
(Figures 2C) generated the best separation between the four
treatment groups and the control, demonstrating that our
integrated NMR/DI-ESI-MS approach enhances our ability to
distinguish subtle changes in the metabolome of dopaminergic
cells upon treatment with environmental/mitochondrial toxins.
The pairwise p-values from the dendrogram calculation for

the combined NMR and DI-ESI-MS data set are listed in Table
1. The p-value represents a relative distance between each pair,
where a lower p-value corresponds to a larger pairwise
separation. Correspondingly, all groups were found to be
significantly separated between each other when using the
combined NMR and DI-ESI-MS data sets (Figure 2C and
Table 1). Thus, all treatments (paraquat, rotenone, MPP+, and
6-OHDA) induced not only a significant metabolic change
when compared to control conditions but also specific and
distinct metabolic changes between them. The different
metabolic shifts between experimental treatments cannot be
attributed to differences in the degree of toxicity induced, as
evidenced by the similar degree of cell death induced at 48 h
post-treatment by the concentrations tested (Figure 2D).
We further aimed to identify the metabolites that

significantly contributed to the class separations in the LDA
plot between the paraquat treated cells vs the control and vs
other treatment groups. The Multiblock Partial Least Squares
Discriminant Analysis (MB-PLS-DA) S-plot generated from the
combined 1D 1H NMR and DI-ESI-MS spectra data sets
(Figure 3A) identifies the metabolites that were significantly
increased (upper right corner) or decreased (lower lef t corner)
after paraquat exposure when compared to control samples. An
increase in citrate, glucose-6-phosphate/fructose-6-phoshate,
heptose (sedoheptulose), and hexose (glucose or myoinositol),
and a decrease in lactate, glutamate, dopamine, and phospho-
aspartate were clearly observed in the MB-PLS-DA S-plot

Table 1. Pairwise Matrix of p Values from 3D MB-PCA Dendograma

C P M R O

C 5.50 × 10−6 4.67 × 10−8 4.72 × 10−7 2.99 × 10−5

P 5.50 × 10−6 6.25 × 10−8 7.70 × 10−6 5.91 × 10−4

M 4.67 × 10−8 6.25 × 10−8 1.06 × 10−5 2.40 × 10−6

R 4.72 × 10−7 7.70 × 10−6 1.06 × 10−5 1.67 × 10−3

O 2.99 × 10−5 5.91 × 10−4 2.40 × 10−6 1.67 × 10−3

a3D MB-PCA scores plot was generated from the integrated 1D 1H NMR and DI-ESI-MS data set (Figure 2C). Pairwise p values were calculated
from the 3D MB-PCA scores using our PCA/PLS-DA utilities (http://bionmr.unl.edu/pca-utils.php). The p value represents a relative distance
between each pair, where a lower p value indicates a larger separation. C, untreated control; P, paraquat; M, MPP+; R, rotenone; O, 6-OHDA.
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(Figure 3A) and in the original 1D 1H NMR (Figure 3C) and
DI-ESI-MS spectra (Figure 3D). To determine if these
metabolic changes were unique for paraquat, a similar
comparison was made between paraquat and the other toxins.

The resulting MB-PLS-DA Shared and Unique Structures
(SUS) plot is shown in Figure 3B. The SUS plot is a union of
two S-plots (paraquat vs controls and paraquat vs MPP+,
rotenone, and 6-OHDA [other drugs or toxins]), where

Figure 3. Alterations in citrate, glucose-6-phosphate/fructose-6-phosphate, lactate, and glucose content are specific for paraquat treatment. (A) S-
plot was generated from the combined MB-PLS-DA of 1D 1H NMR spectra and DI-ESI-MS spectra. The S-plot was used to identify metabolites that
significantly contribute to the class separation between untreated controls and paraquat treatment. The metabolites located in the upper right
quadrant significantly increased while those located in the lower left quadrant significantly decreased after paraquat exposure. (B) Combined shared
and unique structure (SUS)-plots of 1D 1H NMR and DI-ESI-MS data set highlights the correlation between metabolites significantly altered in
response to paraquat treatment (control vs paraquat) with the alterations induced by the other neurotoxins (paraquat vs MPP+, rotenone, and 6-
OHDA). The positively shared changes (upregulated metabolites) from the both models are located on the upper right corner, while the negatively
shared changes (downregulated metabolites) are presented on the lower left corner. The metabolites falling into the blue boxes are unique to the
model of other drugs vs paraquat. The red boxes are the boundaries for the metabolites unique to the model of control vs paraquat. The model
validation parameters for the S-plot are R2 = 0.999; Q2 = 0.970; CV-ANOVA p value = 1.21 × 10−4. Selected regions of representative 1D 1H NMR
(C) and DI-ESI-MS (D) spectra obtained from the metabolome of cells treated with paraquat identifies peaks corresponding to metabolites whose
concentrations changed after paraquat treatment (red) when compared to untreated controls (black).
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Figure 4. Paraquat induces selective changes in glucose metabolism, TCA cycle and the PPP pathway. Cells were treated with paraquat (0.5 mM),
rotenone (4 μM), MPP+ (2.5 mM), or 6-OHDA (50 μM) for 24 h in glucose free media supplemented with 13C-glucose (3.5 g/L). Analysis of 2D
1H−13C HSQC NMR spectra was used to evaluate changes in glucose-derived metabolites. Bar graphs indicate the relative changes in peak intensity
(concentration) for metabolites associated with (A) the pentose phosphate pathway (PPP), (B) nucleotide biosynthesis, (C) glycolysis, (D) the
TCA cycle, and (E) metabolites derived from glucose metabolism and found accumulated in the extracellular media. Data represent means ± SD of 3
independent experiments. *p < 0.05, control vs neurotoxin treatments. ATP/ADP/AMP, ATP, ADP or AMP; DHAP, dihydroxyacetone phosphate;
NADP/NADPH, NADP, or NADPH; UDP/UMP, UDP, or UMP.
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features shared by the two S-plots are plotted along the
diagonal and features unique to either of the S-plots are plotted
off-diagonally. The SUS plot shows that changes in the
concentrations of citrate, glucose-6-phosphate/fructose 6-
phoshate, hexose, lactate, and dopamine are a unique result
of paraquat treatment (Figure 3B).
Paraquat Induces an Increase in Metabolites within

the Pentose Phosphate Pathway (PPP). Glucose is the
obligatory energy substrate of the adult brain. To further our
understanding of the changes in the metabolome resulting from
the treatment with the distinct toxins, media was supplemented
with 13C glucose, and the distribution of 13C-carbons
throughout the metabolome was monitored by two-dimen-
sional (2D) 1H−13C HSQC NMR. Metabolite identification
was accomplished by comparing the experimental 1H and 13C
chemical shifts to standard values in NMR metabolomics
databases and concentration changes were inferred based on
changes in peak intensities relative to untreated controls.
Consistent with the observed changes in the 1D 1H NMR and
DI-ESI-MS data sets, paraquat treatment resulted in an increase
in glucose, glucose-6-phosphate, fructose-6-phosphate, glucose-
1-phosphate, and glucono-1,5-lactone, which are associated
with the pentose phosphate pathway (PPP) (Figure 4A and 7).
Similar to MPP+, paraquat decreased purine levels (ATP, ADP,
and AMP) (Figure 4B). Paraquat also induced a decrease in
metabolites associated with the glycolytic pathway as evidenced
by a decrease in 3-phospho glycerate, dihydroxyacetone
phosphate (DHAP or glycerone phosphate), lactate, and
alanine (Figure 4C and 7). Extracellular metabolite analysis
(Figure 4E) was consistent with the intracellular metabolomics
data. A decrease in extracellular glucose (Figure 4E) in
conjunction with an increase in intracellular glucose (Figure
4A) is indicative of an increase in glucose uptake (Figure 7). A
decrease in extracellular lactate and alanine (Figure 4E)
correlated with their decreased intracellular levels (Figure
4A). These results demonstrate that paraquat increases PPP
metabolite accumulation while decreasing glycolysis (Figure 7).
Both the 1D 1H NMR and DI-ESI-MS data sets and the 2D

1H−13C HSQC NMR analysis of 13C-carbon flux also identified
a large increase in citrate and a decrease in aspartate resulting
from paraquat treatment (Figure 4D and 7). Iron−sulfur cluster
containing proteins, such as aconitase, are important targets for
ROS. Aconitase catalyzes the stereospecific isomerization of
citrate to isocitrate in the tricarboxylic acid cycle (TCA). Thus,
the inhibition of aconitase activity by ROS would be expected
to increase the cellular pool of citrate. The observed decrease in
aspartate, a product of the TCA cycle generated from the
addition of an amino group to oxaloacetate by aspartate
aminotransferase (GOT1) (Figure 7), also indirectly supports
the inactivation of aconitase by paraquat. Overall, our results
are consistent with prior observations demonstrating an
increase in citrate accumulation via inhibition of aconitase by
paraquat-induced superoxide anion formation,24 as well as an
increase in the PPP upon paraquat exposure25 (Figure 7).
Interestingly, the increase in glucose uptake and impairment

in the TCA cycle induced by paraquat were not translated in an
increase in glycolytic rate (measured by the production of
lactate), but rather a decrease in lactate content (Figure 4C and
7). This might be explained by the increased accumulation of
citrate, a well-known allosteric inhibitor of phosphofructokinase
1 (PFK, Figure 7, dotted red line),26 which catalyzes the
phosphorylation of fructose-6-phosphate to fructose-1,6-bi-
sphosphate, a key regulatory step in the glycolytic pathway.

Another possibility is that the increase in acetyl-glucosamine
induced by paraquat (Supporting Information Figure 2A) could
also inhibit PFK by glycosylation as reported elsewhere.27 In
either case, paraquat activity appears to result in a decrease in
glycolysis activity through an indirect inhibition of PFK, as
evidenced by the decrease in the content of metabolites
associated with glycolysis downstream of PFK (Figure 7).
MB-PLS-DA S-plot and SUS plot analyses were also

generated from the 1D 1H NMR and DI-ESI-MS data sets
for the other neurotoxin treatments (Supporting Information
Figure 1) and compared to the 2D 1H−13C HSQC NMR
results (Figure 4). Strikingly different shifts in the metabolome
were observed for cells treated with rotenone, MPP+ or 6-
OHDA compared to paraquat. MPP+, rotenone, and 6-OHDA
were shown to increase extracellular lactate accumulation
(Figure 4E), which is likely associated with an increase in
glycolysis, as previously reported.8,12 Additionally, MPP+, but
not rotenone, increased the accumulation of choline-containing
metabolites (Supporting Information Figure 2).28 Accordingly,
previous findings have revealed abnormally elevated lactate and
choline metabolite levels in PD subjects.29,30 MPP+ and
rotenone decreased purine (ATP, ADP AMP, and GMP)
levels, while pyrimidine content (CMP, UDP, and UMP) were
only affected by MPP+.
While 1D 1H NMR analysis identified a decrease in citrate

and alanine upon MPP+ treatment, only a slight but
nonsignificant decrease was found by 2D 1H−13C HSQC
NMR, which might be ascribed to the low basal levels of these
metabolites. Similar to paraquat, 6-OHDA and rotenone were
found to induce a decrease in alanine and aspartate. In contrast
to paraquat, and as reported elsewhere,31 a decrease in citrate
content by rotenone was consistently detected by both 1D 1H
NMR (Supporting Information Figure 1) and 2D 1H−13C
HSQC NMR experiments (Figure 4D), which was similarly
reported in PD plasma samples.32 All neurotoxins where shown
to significantly reduce glutamate content, while intracellular
glutamine levels remained unaltered (Supplementary Figure 2).
However, extracellular glutamine accumulation was reduced
(Figure 4E). Contradictory findings have been reported
regarding the changes in levels of glutamate and glutamine in
response to these neurotoxins33,34 or in the serum and
cerebrospinal fluid of PD patients.35,36 Interestingly, despite
TCA cycle blockage by paraquat, both TCA cycle metabolites
oxoglutarate and succinate remained unchanged. We can
hypothesize that both glucose and aspartate transamination
via glutamate dehydrogrenase (GLDH) and aspartate amino-
transferase (GOT1), respectively, can compensate for the
blockage of the TCA cycle via inhibition of aconitase by
paraquat (Figure 7). It is important to highlight that the
observed alterations in the metabolomes due to neurotoxin
treatments occurred prior to cell death, since samples were
harvested after only a 24 h treatment (Figure 1A). Conversely,
in vivo studies and clinical sample analysis cannot distinguish
between metabolic alterations that occur before cell death
(alterations in cell metabolism per se), or metabolic changes
associated with cell death (lysis). This uncertainty might
explain the observed discrepancies.

Paraquat Induces an Increase in Glucose-6-Phosphate
Dehydrogenase Levels. A proteomic analysis was performed
to determine whether the alterations in energy/redox metabolic
pathways correlated to some extent with changes in protein
levels. A 24 h of paraquat exposure induced a significant
upregulation or downregulation (>25%) in the expression
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levels of a number of proteins (Figure 5A). Conversely,
paraquat induced the expression of very few de novo proteins as
most of the proteins identified were already present in control
cells (Figure 5D). The proteins with alterations in their
expression levels were classified by their biological function and
were shown to be involved in a number of processes including
cytoskeleton organization, redox signaling, and mitochondrial
function (Figure 5B). Particularly noteworthy was the observed
increase in glucose-6-phosphate dehydrogenase (G6PD),
mitochondrial malate dehydrogenase (MDH), phosphoglycer-
ate kinase 1 (PGK1), ATP-citrate synthase (CS), and pyruvate

kinases isozymes M1/M2, as well as a decrease in lactate
dehydrogenase A/B chains (Figure 5C and 7), which correlated
with the alterations in the PPP, TCA cycle, and glycolysis
pathway identified from the metabolomics analysis (Figure 4
and 7). G6PD is the rate-limiting enzyme of the PPP, and a
major source of NADPH required by antioxidant pathways.37

The proteomics result was confirmed by western-blot where a
clear increase in G6PD levels was induced by increasing doses
of paraquat (Figure 5E). Thus, the increase in G6PD expression
correlates with the increase in PPP metabolites induced by
paraquat (Figure 7).

Figure 5. Paraquat induces an increase in G6PD and alterations in proteins involved in apoptosis and redox signaling. (A) Proteomic analysis of cells
treated for 24 h with paraquat (0.5 mM). (B−C) Biological function and identification of proteins whose expression levels were found to be
significantly changed (>25% increase or decrease, p < 0.05) by paraquat exposure (see squares in A). An increase in the expression levels of glucose-
6-phosphate dehydrogenase (G6PD), mitochondrial malate dehydrogenase, phosphoglycerate kinase, ATP-citrate synthase, and pyruvate kinases
M1/M2 as well as a reduction in lactate dehydrogenases A/B chain are highlighted by asterisks as they relate to the metabolic alterations observed by
NMR/DI-ESI-MS metabolomics (see Figure 7). (D) Changes in the overall expression levels of proteins demonstrate that only a small subset of
proteins was identified in either control or paraquat-treated cells. (E) Western blot analysis of changes in G6PD expression induced by paraquat.
Numbers below (italics) represent the densitometry analysis with respect to the loading control (GAPDH). Data in A−D were generated from 4
independent samples.
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G6PD Regulates Paraquat Toxicity. The metabolomic
and proteomic data suggested that alterations in the PPP and
G6PD expression levels might be involved in the regulation of
paraquat toxicity. To further investigate this relationship, cells
were transduced with adenovirus encoding for human G6PD
(Ad-G6PD) or empty adenovirus (Ad-Empty) (Figure 6A).
Ad-G6PD induced a robust expression of G6PD at low titers.

Because high titers of Ad-Empty also increased G6PD
expression, we used low titers (0.15 MOI) to induce G6PD
overexpression and compare it to empty (control) virus
infection. G6PD overexpression increased cell death (Figures
6B and C [Q1and 2 quadrants in contour plots, broken lines])
and oxidative stress (measured as GSH loss) (Figure 6C, Q4
regions in contour plots, dotted lines]) induced by paraquat, but

Figure 6. Paraquat-induced cell death and oxidative stress is selectively regulated by G6PD and the PPP pathway. (A) Cells were transduced with
Ad-G6PD at distinct MOI for 24 h and G6PD levels were determined by Western blot. (B and C) Cell death and GSH depletion induced by
paraquat (0.5 mM), rotenone (4 μM), MPP+ (2.5 mM) or 6-OHDA (50 μM) after 48 h of treatment, was simultaneously evaluated by flow
cytometry using PI and mBCl, respectively. Data in (B) is represented as fold increase in the mean PI fluorescence and are means ± SE of 3
independent experiments. *p < 0.05, Empty vs G6PD values. Data in C are represented in a two-dimensional contour plot display of cell death (PI
uptake) vs GSH levels (mBCl). Cell death (see Q1−2 quadrants in broken line squares) is observed as an increase in PI fluorescence (y axis), while
oxidative stress is reflected by GSH depletion (see Q4 quadrants in dotted lines) and a decrease in mBCl signal (x axis). Percentages in quadrants
highlight the changes in the number of cells. (D and E) Cell death and oxidative stress induced by paraquat was evaluated in the presence or absence
of 6-aminonicotinamide (6-AN, 1 mM). (D) Cell death is represented in the histograms as an increase in the population of cells (%) with increased
PI fluorescence (see broken line squares). (E) GSH depletion and mitochondrial ROS formation were simultaneously evaluated by flow cytometry
using mBCl and MitoSOX, respectively. Data are represented in a two-dimensional contour plot display of changes in intracellular GSH (mBCl) vs
mitochondrial ROS state levels (MitoSOX). Oxidative stress is observed as a decrease in both GSH content (y axis) and an increase in MitoSOX
signal (x axis). Q4 quadrants (broken lines) highlight the population of cells (in %) with both GSH depletion and mitochondrial ROS accumulation.
5% probability contour plots (C and E) and histograms (D) are representative of three independent experiments.
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Figure 7. Paraquat hijacks the PPP to induce oxidative stress and cell death. Our results demonstrate that paraquat induces an increase in the PPP
(highlighted in green), which is reflected by an increase in glucose uptake, and in glucose-6-phosphate, glucono-1,5-lactone, erythrose-4-phosphate,
and fructose-6-phosphate content (red arrows). In addition, paraquat decreases glycolysis as demonstrated by a decrease in 3-phosphoglycerate,
alanine, and lactate levels (green arrows). These metabolic changes were also paralleled by (1) an increase in G6PD (the rate-limiting enzyme in the
PPP), and the expression levels of citrate synthase and pyruvate kinases M1/M2 and (2) a decrease in lactate dehydrogenase A/B chains, which
participate in glycolysis and the TCA cycle (highlighted in orange). Paraquat also induced an increase in citrate accumulation, which is associated with
the well-known inhibitory effect on aconitase (highlighted in orange). An abnormal increase in citrate levels has been reported to exert an inhibitory
effect on glycolysis by allosteric inhibition of PFK (broken red line), which explains why an increase glucose uptake and impaired TCA cycle is not
translated to an upregulation in glycolysis. Paraquat also induced a decrease in total GSH and glutamate content. Modulation of G6PD levels and
activity was directly linked to paraquat toxicity and oxidative stress (highlighted in green). These results demonstrate a role for PPP and G6PD in
paraquat induced toxicity. 6-AN, 6-aminonicotinamide, ACO, aconitase, or aconitate hydratase [EC:4.2.1.3]; ADC, aspartate 4-decarboxylase
[EC:4.1.1.12]; ALDO, fructose-bisphosphate aldolase [EC:4.1.2.13]; ALT, alanine transaminase [EC:2.6.1.2]; CS, citrate synthase [EC:2.3.3.1];
FBP, fructose-1,6-bisphosphatase I [EC:3.1.3.11]; FUM, fumarate hydratase [EC:4.2.1.2]; G6PD, glucose-6-phosphate 1-dehydrogenase
[EC:1.1.1.49]; GAPDH, glyceraldehyde-3-phosphate dehydrogenase [EC:1.2.1.12]; GLDH, glutamate dehydrogenase, [EC: 1.4.1.2]; GLS,
glutaminase [EC: 3.5.1.2]; GOT1, aspartate aminotransferase, cytoplasmic [EC:2.6.1.1]; GPI, glucose-6-phosphate isomerase [EC:5.3.1.9]; HK,
hexokinase [EC:2.7.1.1]; IDH, isocitrate dehydrogenase [EC:1.1.1.42]; LDH, L-lactate dehydrogenase [EC:1.1.1.27]; MDH, malate dehydrogenase
[EC:1.1.1.37]; OGDH, 2-oxoglutarate dehydrogenase, [EC:1.2.4.2]; LSC, succinyl-CoA synthetase [EC:6.2.1.4 6.2.1.5]; PC, pyruvate carboxylase
[EC:6.4.1.1]; PGD, 6-phosphogluconate dehydrogenase [EC:1.1.1.44]; PDH, pyruvate dehydrogenase [EC:1.2.4.1]; PGK1, phosphoglycerate kinase
[EC:2.7.2.3]; PGM, phosphoglucomutase [EC:5.4.2.2]; PFK, 6-phosphofructokinase 1 [EC:2.7.1.11]; RPI, ribose-5-phosphate isomerase A
[EC:5.3.1.6]; SDH, succinate dehydrogenase [EC:1.3.5.1]; TPI, triosephosphate isomerase [EC:5.3.1.1]; TAL, transaldolase [EC:2.2.1.2]; TKT,
transketolase [EC:2.2.1.1].
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not by exposure to the other toxins (Figure 6B−C).
Accordingly, inhibition of G6PD with 6-AN selectively reduced
paraquat-induced toxicity (Figure 6D), mitochondrial ROS
formation, and GSH depletion (Figure 6E, Q4 quadrants in
contour plots, dotted lines). 6-AN had no effect on cell death
and GSH depletion induced by either rotenone, MPP+, or 6-
OHDA (Supporting Information Figure 3A and B). In most
circumstances, increased G6PD activity has been reported to
protect against oxidative stress-induced cell death.38 However,
the increased paraquat toxicity induced by G6PD over-
expression and the protective effects of 6-AN can be explained
by the requirement of reducing equivalents for paraquat to
redox cycle (Figure 7).39 Accordingly, G6PD inhibition has
been shown to reduce paraquat-induced cell death,40 while
G6PD overexpression was demonstrated to increase it.41 These
results also suggest that by “hijacking” the PPP, paraquat
outcompetes the GSH recycling by glutathione reductase (GR),
which also requires NADPH, thus, arguing against the
protective role of this antioxidant system against paraquat. A
previous study reported a protective effect of GR against
paraquat toxicity.42 When we overexpress GR in the cytosol or
mitochondria (manuscript in preparation) together with G6PD,
we were not able to prevent paraquat-induced cell death. In
contrast, we (data not shown) and others have observed that
direct supplementation of cell permeable GSH, inhibition of
GSH de novo synthesis,43 or glutathione peroxidase44 protects
against paraquat toxicity. In addition, a recent manuscript
demonstrated that paraquat induces dopamine depletion in the
brain of the glutamate-cysteine ligase modifier subunit (Gclm)
knockout mice chronically deficient in GSH.45 Thus, GSH
exerts a protective effect against paraquat, but its recycling by
the GR/NADPH system might be impaired by the depletion of
NADPH by paraquat. Interestingly, paraquat induced a slight,
but not significant, decrease in NADPH (or NADH) levels,
while the NADP+ content remains largely unaffected (Figure
4). While our results demonstrate that paraquat upregulates the
PPP and thus the formation of NADPH, the constant use of
NADPH by paraquat’s redox cycling mechanism would be
expected to prevent any increased accumulation of NADPH in
the cell. In any case, the protective effect of 6-AN and the
stimulatory role of G6PD overexpression support a role for
NADPH metabolism in paraquat toxicity (Figure 7).
In the cell, G6PD is an important, but not an exclusive source

for NADPH, which can also be produced by 6-phosphogluc-
onate dehydrogenase (PGD) (Figure 7), MDH, and isocitrate
dehydrogenase (IDH).37 Interestingly, we also found an
increase in the expression levels of mitochondrial MDH in
cells treated with paraquat (Figure 5C and 7), which might
contribute to paraquat’s redox cycle in the mitochondria. 6-AN
is taken up by cells and transformed into 6-amino-NADP+ by
NAD-glycohydrolase, which acts as an analogue of NADP+. 6-
AN acts as a competitive inhibitor of G6PD and PGD, which
also requires NADP+. Importantly, 6-AN inhibits PGD with an
inhibitor constant (Ki) of 0.13 × 10−6 M, approximately 400-
fold lower than the Ki for G6PD.

46 Thus, we can consider that
6-AN inhibits the PPP pathway by acting in both PGD and
G6PD (Figure 7, highlighted in green). As a result, the reversal of
paraquat toxicity by 6-AN cannot be solely attributed to G6PD
inhibition. However, because both G6PD and PGD generate
NADPH, the protective effects of 6-AN against paraquat
toxicity are likely mediated by inhibition of the PPP and
NADPH synthesis. It is important to mention that G6PD
overexpression/activation would not only provide NADPH for

paraquat redox cycling, but it could also increase nitric oxide
synthase (NOS) and NADPH-oxidase activities, which have
also been suggested to contribute to paraquat-induced oxidative
stress.47,48

MPP+-, rotenone-, or 6-OHDA-induced toxicity was not
shown to be modulated by G6PD expression/activity. Previous
reports have demonstrated that mice overexpressing G6PD are
protected against MPTP-induced loss of dopaminergic cells.49

However, an association between G6PD activity levels and PD
is still controversial since contradictory results have been
published in the literature.50,51 Because of the multifactorial
nature of PD pathogenesis, for example, the generation of
oxidative stress can be associated with a range of factors such as
mitochondrial dysfunction, dopamine toxicity, or exposure to
redox cycling agents. It is plausible that a more thorough
analysis could reveal an association between alterations in
G6PD activity levels or polymorphisms, and an increased risk
for developing PD in individuals exposed to redox cycling
herbicides. Such studies have already revealed that genetic
modifications in glutathione s-transferase M1 (GSTM1) and
the dopamine transporter (DAT) are associated with an
increased risk of developing PD from paraquat exposure.52,53

Alterations in Dopamine Content. The toxicity of
environmental/mitochondrial toxins has also been largely
linked to alterations in dopamine metabolism and distribution.
Intracellular dopamine content and/or its redistribution from
vesicles to the cytoplasm increase the toxicity of paraquat,
rotenone, and MPP+. Dopamine levels decrease significantly in
paraquat treated mice, which was associated with increased
dopamine oxidation.54 Similarly dopamine oxidation has also
been shown to mediate rotenone and MPP+ toxicity.55,56

MPP+-, rotenone-, and paraquat- induced DA depletion has
also been attributed to an increase in DA release.57−59 In
addition, MPTP/MPP+ and 6-OHDA have also been reported
to oxidize and inhibit tyrosine hydroxylase, the enzyme that
catalyzes the rate limiting step in this synthesis of catechol-
amines.60,61 Rotenone and MPTP/MPP+ also induce a
redistribution of dopamine from vesicles to the cytosol by
inhibition or downregulation of the vesicular monoamine
transporter 2 (WMAT2).62,63 Accordingly, we found that
paraquat induced a decrease in dopamine content (Figure 3A−
C). In contrast, MPP+ induced an increase in dopamine content
(Supporting Information Figure 1A and B). Interestingly, an
increase in tyrosine hydroxylase activity and dopamine levels
was found in individual cell bodies in the substantia nigra in a
presymptomatic and early symptomatic MPTP mouse model
that induce subthreshold and threshold loss of dopaminergic
cells, respectively,64 which correlates with our present findings.

Relationship between Oxidative Stress and Alter-
ations in Energy/Redox Metabolism. In the brain, both
energy metabolism and redox homeostasis are tightly coupled.
Paraquat, MPP+, rotenone, and 6-OHDA induce ROS
formation through different mechanisms. MPP+ and rotenone
are reported to act as complex I inhibitors, and it is expected
that mitochondrial dysfunction results in superoxide anion
formation. 6-OHDA has been indicated to produce ROS
through enzymatic or nonenzymatic auto-oxidation. In the case
of paraquat, ROS formation is mainly generated via its redox
cycling. We speculate that NADPH consumption by paraquat39

would be independent from superoxide anion formation, while
the increase in citrate via the well reported effect of paraquat
inactivating aconitase65 will be ROS dependent. 6-OHDA
would be expected to exert its effects by their pro-oxidant
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nature and/or direct adduction/modification of proteins. In
contrast, since rotenone and MPP+ act directly on complex I,
ROS formation and metabolic changes can be induced
independently. In fact, energy failure has been proposed to
mediate MPP+ and rotenone toxicity independent from
oxidative stress.8,66−68 In any case, ROS formation induced
by these toxins would eventually be expected to impair energy
metabolism. Importantly, the different metabolic changes
induced by the neurotoxins were not associated with differences
in the levels of ROS, because a similar increase in mitochondrial
ROS was induced by paraquat, MPP+, and rotenone at the
concentrations tested (Supporting Information Figure 4A).
Previous findings have demonstrated that GSH depletion is

an important contributor to oxidative stress and dopaminergic
cell death induced by environmental/mitochondrial toxins.69

Clinical data also shows that a decrease in the GSH levels is one
of the earliest biochemical alterations detected in incidental
Lewy body disease, considered an asymptomatic precursor to
PD.70 Accordingly, 2D 1H−13C HSQC NMR experiments
revealed that a 24 h treatment with paraquat, MPP+, and
rotenone induced a decrease in total GSH/GSSG (reduced
[GSH] or oxidized [GSSG]) (Supporting Information Figure
2). In contrast, 6-OHDA toxicity was shown to increase total
GSH/GSSG content (Supporting Information Figure 1E and F
and Figure 2). It has been previously reported that 6-OHDA is
oxidized by molecular oxygen to generate reactive oxygen
species and 2-hydroxy-5-(2-aminoethyl)-1,4-benzoquinones(p-
quinone). Partially substituted quinones (p-quinone) can react
with cellular nucleophiles such as thiols (including GSH)
forming covalently linked quinone-thiol adducts.6,71 Thus, 6-
OHDA-induced GSH depletion could be expected to trigger a
compensatory response to increase GSH content. In fact, a
previous study demonstrated an early increase in GSH
synthesis and γ-glutamylcysteine ligase (the rate-limiting
enzyme in GSH synthesis) levels in response to 6-
OHDA.72,73 We further aimed to corroborate these results
using the enzymatic recycling method. Accordingly 6-OHDA
induced a significant increase in total GSH (GSH and GSSG)
levels (Supporting Information Figure 4B). In contrast to our
2D 1H−13C HSQC NMR results (Supporting Information
Figure 2) paraquat MPP+ or rotenone had no significant effect
in total GSH content (Supporting Information Figure 4B). It is
important to state that our 2D 1H−13C HSQC NMR
experiments only detects metabolites derived from glucose
metabolism. In neurons, however, glutamine is required for
glutamate synthesis via glutaminase (GLS)74 (Figure 7). Our
results then suggest that paraquat, MPP+, and rotenone
decrease GSH synthesis directly dependent from glucose
metabolism, which correlates with a decrease in the content
of the glutathione precursor glutamate (Supporting Informa-
tion Figure 2 and Figure 7). Then, total GSH content
(Supporting Information Figure 4B) might be maintained by
glutaminolysis, but additional experiments using isotopically
labeled glutamine would be required to clarify this issue.
Interestingly, only paraquat induced a significant accumulation
of GSSG (Supporting Information Figure 4B), which
corroborates our hypothesis that paraquat impairs the GR/
NADPH recycling system (Figure 7).
Using flow cytometry we then analyzed the changes in the

intracellular content of reduced glutathione (GSH) using
monochlorobimane, a GSH-binding dye that forms blue-
fluorescent adducts with intracellular GSH after 48 h treatment
with neurotoxins. Contour plots in Figure 6C (lower quadrant

4 [Q4] in dotted line) depicts cells with high (basal) levels of
intracellular GSH. A 48 h treatment with paraquat (76.4%),
MPP+ (68.9%), rotenone (63.5%), and 6-OHDA (78.7%)
induces a decrease in this population of cells with high levels of
GSH with respect to control (96.9%). The decrease in GSH
content was mainly associated with cell death progression as
evidenced by the loss of plasma membrane integrity (PI
uptake). Thus, while paraquat, MPP+, and rotenone induce a
reduction in glucose-dependent glutamate-derived GSH syn-
thesis, 6-OHDA treatment increases it. However, upon cell
death progression, GSH concentration depletion parallels cell
demise.
In principle, it would seem straightforward to evaluate if the

alterations in energy metabolism induced by these neurotoxins
are dependent on ROS formation by overexpression of
antioxidant enzymes or exposure to antioxidants. However,
the exact nature of the ROS and oxidative damage induced by
paraquat, MPP+, rotenone, and 6-OHDA is quite complex and
the mechanisms are still unclear. For example, superoxide anion
has been largely thought to be the primary ROS mediating
oxidative damage associated with mitochondrial dysfunction
induced MPP+, rotenone, or paraquat. However, we have
recently published that overexpression of MnSOD only
protects against paraquat-, but not MPP+- or rotenone-induced
toxicity.5 Interestingly, we observed that overexpression of
MnSOD does not prevent free radical formation induced by
MPP+ and rotenone, suggesting that additional mechanisms
involved. Indeed, nitric oxide and hydroxyl radical formation
has been reported to mediate the toxicity induced by MPP+ and
rotenone.75−78

Similarly, while overexpression of MnSOD would scavenge
superoxide anion formation induced by paraquat,5 it would lead
to an increased accumulation of hydrogen peroxide. When we
overexpress catalase or mitochondria-targeted catalase, we have
not seen any protection against paraquat toxicity (data not
shown). This can also be explained by the fact that catalase also
requires NADPH for its proper function, and thus, paraquat
redox cycling could be expected to impair catalase activity.
Finally, paraquat also impairs NADPH dependent antioxidant
systems such as the peroxiredoxins/thioredoxin/thioredoxin
reductase (data not shown). 6-OHDA-induced oxidative
damage has been linked to depletion/adduction of intracellular
thiols (GSH and cysteine) and generation of both extracellular
and intracellular ROS.71,79,80 Thus, there is no single
antioxidant or antioxidant system that would be expected to
efficiently prevent ROS formation and oxidative stress induced
by any of these toxins and addressing this issue requires
extensive and additional investigation.
In summary, our data demonstrates that paraquat “hijacks”

the PPP to produce NADPH, which in turn is used as an
electron donor for paraquat’s redox cycle to generate ROS
(Figure 7, green square). Paraquat also induced a blockage of
glycolysis likely linked to increased citrate accumulation via
impaired TCA cycle at the level of aconitase (Figure 7).
Another important outcome of this study is that we
demonstrate that alterations in energy/redox metabolism,
which are specific for distinct environmental toxins, are not
bystanders to energy failure but also contribute significantly to
cell death progression. Our data supports the notion that by
studying metabolic alterations in an integrated and comparative
manner, we can reveal novel mechanisms of toxicity specifically
associated with different environmental exposures. The differ-
ences in the metabolic alterations found between the distinct
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toxicological models used, exemplifies the concept that the
multifactorial nature of PD might require further stratification
of cases to identify the specific triggers of dopaminergic cell
loss. This information has the potential to contribute to the
design of customized therapeutic approaches according to the
multifactorial nature of PD.

■ METHODS
Cell Culture, Treatments, Microscopy, Western Immunoblot,

Flow Cytometry, and Reagents. The human dopaminergic
neuroblastoma cell line SK-N-SH was originally derived from the
bone marrow of metastatic neuroblastoma from a female patient. SK-
N-SH cells have been reported to express significant levels of
dopamine β-hydroxylase, acetylcholinesterase,81 and to have detectable
levels of tyrosine hydroxylase activity.82,83 These cells can be
differentiated into neuronal cells with retinoic acid (RA). Differ-
entiated cells have been reported to contain higher levels of neuronal
markers, such as NMDA receptors.84 We have observed similar levels
of dopamine transporter expression (DAT, SLC6A3) between RA
differentiated and nondifferentiated cells (unpublished data). In
addition, similar to the SH-SY5Y neuroblastoma cells, we have
observed that differentiated SK-N-SH become more resistant to
neurotoxin treatments, which has been attributed to increased levels of
survival signals.85−88 Detailed information on the cell culture
procedures for this cell line, neurotoxin treatments, and Western
blot procedures can be found in previous work from our group.89 Anti-
glucose-6-phosphate dehydrogenase (G6PD) was from Abcam Ab993.
6-OHDA was prepared in ddH2O containing 0.01% ascorbic acid to
avoid confounding effects mediated by its oxidized breakdown
products.90,91 Phase contrast images of cells were taken using a
Zeiss 20×/0.3 LD-A-Plan Ph1 objective and a Moticam 580 (5.0 MP)
camera. The construction of adenoviral-human G6PD expression
vector has been described previously.92 Recombinant adenovirus
amplification, titration, and infection procedure of SK-N-SH cells were
also described elsewhere.89 Loss of cell viability was determined by
propidium iodide uptake (PI) as a marker for compromised plasma
membrane integrity. Oxidative stress was assessed by simultaneous
determination of mitochondrial reactive oxygen species (ROS) levels
using MitoSOX Red and intracellular GSH levels using monochlor-
obimane (mBCl) (Invitrogen). Flow cytometric approaches have been
previously explained in detail.5,93

NMR and MS Metabolomics Data Collection. A detailed
description of the protocol and optimization of the combined use of
NMR and direct-infusion electrospray ionization mass spectrometry
(DI-ESI-MS) for the analysis of the metabolome is described in
another manuscript (Marshall et al., Combining MS and NMR Data
Sets for Metabolomics Profiling, in revision). Briefly, a single cell lysate
sample was prepared for both NMR and DI-ESI-MS analysis. Cells
were treated as indicated. Six replicates were prepared for each
treatment class for the analysis of global changes in the metabolome
(1D 1H NMR), while three replicates were prepared for metabolite
identification using 2D 1H−13C HSQC experiment, where 12C-glucose
in the medium was replaced with 13C-glucose (3.5 g/L). Cells were
washed twice with ice-cold PBS to discard dead cells. Metabolites were
extracted with cold methanol (−80 °C), followed by 100% ddH2O.
The supernatants from the three extractions were used for NMR and
DI-ESI-MS analysis. Reserpine (20 μM) was used as internal mass
reference for DI-ESI-MS. 3-(trimethylsilyl)propionic acid-2,2,3,3-d4
(TMSP) was used in the1D 1H NMR (50 μM) and 2D1H−13C HSQC
(500 μM) experiments for chemical shift referencing. The 1D 1H
NMR and 2D 1H−13C HSQC spectra were collected on a Bruker DRX
Avance 500-MHz spectrometer equipped with a 5 mm triple-
resonance cryoprobe (1H, 13C, and 15N) with a z-axis gradient, a
BACS-120 sample changer, Bruker ICON-NMR, and an automatic
tuning and matching (ATM) unit, and analyzed, as previously
described.94

DI-ESI-MS was performed on a Synapt G2 HDMS quadrupole
time-of-flight instrument (Waters Corp., Milford, MA). The spectra
for multivariate analysis were acquired for 0.5 min with a mass range of

m/z 50 to 1200 using optimized ESI and nESI source conditions
(Marshall et al., Combining MS and NMR Data Sets for Metabolomics
Profiling, in revision). DI-ESI-MS spectra were processed using
MassLynx V4.1 (Waters).

Multivariate Analysis of NMR and DI-ESI-MS Metabolomics
Data Set. To prepare an input data set for the multivariate analysis,
the 1D 1H NMR spectra were preprocessed by our MVAPACK
software suite (http://bionmr.unl.edu/mvapack.php).95 The NMR
spectra were preprocessed by exponential apodization and zero-filling
prior to Fourier transformation and then were automatically phased,
PSC-normalized,95 and binned.96 The DI-ESI-MS spectra were binned
using a uniform bin size of 0.5 m/z and probabilistic quotient (PQ)-
normalized97 by the MVAPCK software suite. A manual noise removal
step was performed on both 1D 1H NMR spectra and DI-ESI-MS
spectra. The LDA plots, MB-PLS-DA S-plots, and MB-PLS-DA SUS
plots were generated using the MVAPACK software suite. Specifically,
the results of multivariate analysis on the combination of the 1D 1H
NMR and DI-ESI-MS data sets were obtained by using a multiblock
structure and PCA and PLS modeling functions in MVAPACK.
Importantly, the two blocks of NMR and MS data sets were scaled by
the square root of its respective variable count in order to avoid the
unequal contribution of each block to the combined model, caused by
large differences in the variable count between blocks. The detailed
process procedures can be found in the manuscript (Marshall et al.,
Combining MS and NMR Data Sets for Metabolomics Profiling, in
revision). Hotelling 95% confidence ellipses, MB-PCA scores dendro-
grams and corresponding Mahalanobis p-values were generated using
our PCA/PLS-DA utilities (http://bionmr.unl.edu/pca-utils.php).98,99

An observed p-value ≤0.05 between two clusters indicates a
statistically significant difference between clusters. The MB-PLS-DA
models were validated using CV-ANOVA100 7-fold Monte Carlo single
cross-validation.101

Metabolite Identification. The Platform for RIKEN Metabolo-
mics (PRIMe, http://prime.psc.riken.jp/),102 Human Metabolome
Database (HMDB, http://www.hmdb.ca/),103 Madison Metabolomics
Consortium Database (http://mmcd.nmrfam.wisc.edu/),104 Metabo-
miner (http://wishart.biology.ualberta.ca/metabominer/),105 and Bio-
magResBank (BMRB, http://www.bmrb.wisc.edu/)106 were used for
NMR peak annotation using an error tolerance of 0.08 and 0.25 ppm
for 1H and 13C chemical shifts, respectively. The intensities of all peaks
assigned to a metabolite were then used to report the average peak
intensity, and intensity (concentration) changes between treatment
classes. Accurate mass experiments were also used to assist in the
identification of metabolites associated with class differentiation. All
metabolite mass spectra from the accurate mass experiments were
smoothed, centroided, and internally mass corrected relative to the [M
+ H]+ ion for reserpine (m/z 609.2812) using MassLynx V4.1. The
accurate masses were searched against the online metabolite DI-ESI-
MS databases Human Metabolome (HMDB, http://www.hmdb.ca/
)107 and Metabolite and Tandem DI-ESI-MS Database (METLIN,
http://metlin.scripps.edu)108 with a threshold window of 20 ppm.

Proteomics. Proteomic analysis was done as explained in ref 7.
Heat maps of proteins with a significant up- or downregulation of at
least 25% were created using GENE-E software (http://www.
broadinstitute.org/cancer/software/GENE-E/). Venn diagrams were
created using Venn Diagram Plotter software (PNNL, Richland, WA).

Reduced Glutathione (GSH) and Glutathione Disulfide
(GSSG, or Oxidized Glutathione) Content. Cells (>1 × 107)
were harvested and washed with PBS. Acid deproteinization was
performed in 5% metaphosphoric acid. GSSG samples were prepared
by adding 10 μL M2VP (1-methyl-2-vinylpyridium trifluoromethane-
sulfonate, a thiol scavenger). GSH and GSSG quantification was using
a Bioxytech GSH/GSSG-412 assay kit (Oxis Research Assay Service,
Portland, OR). The method uses Ellman’s reagent (5,5′-dithiobis-2-
nitrobenzoic acid or DTNB), which reacts with GSH to form a
spectrophotometrically detectable product at 412 nm. GSSG was
determined by reduction of GSSG to GSH via GR. Data was
normalized by protein concentration. The GSH/GSSH ratio was
calculated by dividing the difference between the total GSH (GSH and
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GSSG) and GSSG concentrations (reduced GSH) by the concen-
tration of GSSG.
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