29 research outputs found

    Imaging fast neural activity in the brain during epilepsy with electrical impedance tomography

    Get PDF
    Electrical impedance tomography (EIT) is a medical imaging technique which reconstructs images of the internal conductivity of an object using boundary measurements obtained by applying current through pairs of non-penetrating surface electrodes. EIT is able to image impedance changes which arise during neural activity at a high spatiotemporal resolution through the rat cerebral cortex and therefore represents a novel method for understanding neuronal network dynamics in epilepsy. Additionally, it holds therapeutic potential for improving the presurgical localisation of epileptogenic foci in individuals with drug-resistant epilepsy. This thesis was aimed at developing EIT for imaging epileptiform activity in vivo and assessing its potential for clinical use. Chapter 1 is a review of existing functional neuroimaging modalities, the principles of EIT and previous studies that have used EIT for imaging epileptic events. In Chapter 2, the safety of continuous current application to the rat cortical surface at 10-100 ÎŒA and 1725 Hz, parameters that are representative of fast neural EIT protocols, was verified by histological evaluation. Chapter 3 details the development of two acute rat models of focal epilepsy, the cortical and hippocampal epileptic afterdischarges models, for assessing the feasibility of imaging epileptiform activity with fast neural EIT using epicortical electrode arrays. In Chapter 4, EIT was used to image the propagation of ictal spike-and-wave activity through the cerebral cortex at a resolution of 2 ms and ≀300 ”m. In order to enable imaging of epileptiform discharges in deeper subcortical structures, the optimal carrier frequency for current application was determined in Chapter 5. Results demonstrated that the maximal signal-to-noise ratio of fast neural impedance changes during ictal discharges is obtained at 1355 Hz. Finally, in Chapter 6, epileptiform activity in the hippocampus was imaged, with a localisation accuracy of ≀400 ”m, using epicortical impedance measurements obtained at this optimised carrier frequency

    Characterising the frequency response of impedance changes during evoked physiological activity in the rat brain

    Get PDF
    OBJECTIVE: Electrical impedance tomography (EIT) can image impedance changes associated with evoked physiological activity in the cerebral cortex using an array of epicortical electrodes. An impedance change is observed as the externally applied current, normally confined to the extracellular space is admitted into the conducting intracellular space during neuronal depolarisation. The response is largest at DC and decreases at higher frequencies due to capacitative transfer of current across the membrane. Biophysical modelling has shown that this effect becomes significant above 100 Hz. Recordings at DC, however, are contaminated by physiological endogenous evoked potentials. By moving to 1.7 kHz, images of somatosensory evoked responses have been produced down to 2 mm with a resolution of 2 ms and 200 ÎŒm. Hardware limitations have so far restricted impedance measurements to frequencies  2 kHz using improved hardware. APPROACH: Impedance changes were recorded during forepaw somatosensory stimulation in both cerebral cortex and the VPL nucleus of the thalamus in anaesthetised rats using applied currents of 1 kHz to 10 kHz. MAIN RESULTS: In the cortex, impedance changed by -0.04 ± 0.02 % at 1 kHz, reached a peak of -0.13 ± 0.05 % at 1475 Hz and decreased to -0.05 ± 0.02 % at 10 kHz. At these frequencies, changes in the thalamus were -0.26 ± 0.1%, -0.4 ± 0.15 % and -0.08 ± 0.03 % respectively. The signal-to-noise ratio was also highest at 1475 Hz with values of -29.5 ± 8 and -31.6 ±10 recorded from the cortex and thalamus respectively. Signficance: This indicates that the optimal frequency for imaging cortical and thalamic evoked activity using fast neural EIT is 1475 Hz

    Intracerebral dynamics of sleep arousals : a combined scalp-intracranial EEG study

    Get PDF
    As an intrinsic component of sleep architecture, sleep arousals represent an intermediate state between sleep and wakefulness and are important for sleep-wake regulation. They are defined in an all-or-none manner, whereas they actually present a wide range of scalp-electroencephalography (EEG) activity patterns. It is poorly understood how these arousals differ in their mechanisms. Stereo-EEG (SEEG) provides the unique opportunity to record intracranial activities in superficial and deep structures in humans. Using combined polysomnography and SEEG, we quantitatively categorized arousals during nonrapid eye movement sleep into slow wave (SW) and non-SW arousals based on whether they co-occurred with a scalp-EEG SW event. We then investigated their intracranial correlates in up to 26 brain regions from 26 patients (12 females). Across both arousal types, intracranial theta, alpha, sigma, and beta activities increased in up to 25 regions ( p  < 0.05; d  = 0.06-0.63), while gamma and high-frequency (HF) activities decreased in up to 18 regions across the five brain lobes ( p  < 0.05; d  = 0.06-0.44). Intracranial delta power widely increased across five lobes during SW arousals ( p  < 0.05 in 22 regions; d  = 0.10-0.39), while it widely decreased during non-SW arousals ( p  < 0.05 in 19 regions; d  = 0.10-0.30). Despite these main patterns, unique activities were observed locally in some regions such as the hippocampus and middle cingulate cortex, indicating spatial heterogeneity of arousal responses. Our results suggest that non-SW arousals correspond to a higher level of brain activation than SW arousals. The decrease in HF activities could potentially explain the absence of awareness and recollection during arousals

    Virulence Characteristics and Genetic Affinities of Multiple Drug Resistant Uropathogenic Escherichia coli from a Semi Urban Locality in India

    Get PDF
    Extraintestinal pathogenic Escherichia coli (ExPEC) are of significant health concern. The emergence of drug resistant E. coli with high virulence potential is alarming. Lack of sufficient data on transmission dynamics, virulence spectrum and antimicrobial resistance of certain pathogens such as the uropathogenic E. coli (UPEC) from countries with high infection burden, such as India, hinders the infection control and management efforts. In this study, we extensively genotyped and phenotyped a collection of 150 UPEC obtained from patients belonging to a semi-urban, industrialized setting near Pune, India. The isolates representing different clinical categories were analyzed in comparison with 50 commensal E. coli isolates from India as well as 50 ExPEC strains from Germany. Virulent strains were identified based on hemolysis, haemagglutination, cell surface hydrophobicity, serum bactericidal activity as well as with the help of O serotyping. We generated antimicrobial resistance profiles for all the clinical isolates and carried out phylogenetic analysis based on repetitive extragenic palindromic (rep)-PCR. E. coli from urinary tract infection cases expressed higher percentages of type I (45%) and P fimbriae (40%) when compared to fecal isolates (25% and 8% respectively). Hemolytic group comprised of 60% of UPEC and only 2% of E. coli from feces. Additionally, we found that serum resistance and cell surface hydrophobicity were not significantly (p = 0.16/p = 0.51) associated with UPEC from clinical cases. Moreover, clinical isolates exhibited highest resistance against amoxicillin (67.3%) and least against nitrofurantoin (57.3%). We also observed that 31.3% of UPEC were extended-spectrum beta-lactamase (ESBL) producers belonging to serotype O25, of which four were also positive for O25b subgroup that is linked to B2-O25b-ST131-CTX-M-15 virulent/multiresistant type. Furthermore, isolates from India and Germany (as well as global sources) were found to be genetically distinct with no evidence to espouse expansion of E. coli from India to the west or vice-versa

    Evaluation of appendicitis risk prediction models in adults with suspected appendicitis

    Get PDF
    Background Appendicitis is the most common general surgical emergency worldwide, but its diagnosis remains challenging. The aim of this study was to determine whether existing risk prediction models can reliably identify patients presenting to hospital in the UK with acute right iliac fossa (RIF) pain who are at low risk of appendicitis. Methods A systematic search was completed to identify all existing appendicitis risk prediction models. Models were validated using UK data from an international prospective cohort study that captured consecutive patients aged 16–45 years presenting to hospital with acute RIF in March to June 2017. The main outcome was best achievable model specificity (proportion of patients who did not have appendicitis correctly classified as low risk) whilst maintaining a failure rate below 5 per cent (proportion of patients identified as low risk who actually had appendicitis). Results Some 5345 patients across 154 UK hospitals were identified, of which two‐thirds (3613 of 5345, 67·6 per cent) were women. Women were more than twice as likely to undergo surgery with removal of a histologically normal appendix (272 of 964, 28·2 per cent) than men (120 of 993, 12·1 per cent) (relative risk 2·33, 95 per cent c.i. 1·92 to 2·84; P < 0·001). Of 15 validated risk prediction models, the Adult Appendicitis Score performed best (cut‐off score 8 or less, specificity 63·1 per cent, failure rate 3·7 per cent). The Appendicitis Inflammatory Response Score performed best for men (cut‐off score 2 or less, specificity 24·7 per cent, failure rate 2·4 per cent). Conclusion Women in the UK had a disproportionate risk of admission without surgical intervention and had high rates of normal appendicectomy. Risk prediction models to support shared decision‐making by identifying adults in the UK at low risk of appendicitis were identified

    Comparison of Xpert MTB/RIF with AFB smear and AFB culture in suspected cases of paediatric tuberculosis in a tertiary care hospital, Karachi

    No full text
    Objective: To evaluate the sensitivity, specificity, positive predictive and negative predictive values of Xpert mycobacterium tuberculosis and resistance to rifampicin by comparing it with acid-fast bacilli smear and culture in suspected tuberculosis patients.Methods: The retrospective study was conducted at the Aga Khan University Hospital, Karachi, and comprised patient data from January 2013 to December 2016. Data related to children with clinical suspicion of pulmonary and extra-pulmonary tuberculosis based on Modified Kenneth Jones criteria, aged 1 month to 18 years whose samples (respiratory or non-respiratory) were sent for Xpert mycobacterium tuberculosis and resistance to rifampicin and acid-fast bacilli smear and culture con currently. Analysis was carried out by STATA 12 and Med Calc softwares .Results: Of the 91 cases, 50(54.9%) related to females. The overall median age of the patients was 12.5 years (interquartile range: 8 years). Overall, 42(46.2%) cases had extra-pulmonary tuberculosis. The Xpert test had 66.7% sensitivity compared to smear microscopy 47.6%. Overall sensitivity, specificity, positive predictive value and negative predictive value were 95.7%, 72%, 51.2% and 98.3% respectively when the two tests were compared.Conclusions: Xpert mycobacterium tuberculosis was found to be more sensitive than acid-fast bacilli smear and culture in both pulmonary and extra-pulmonar y tuberculosis in children
    corecore