387 research outputs found

    Regional inactivations of primate ventral prefrontal cortex reveal two distinct mechanisms underlying negative bias in decision making.

    Get PDF
    Dysregulation of the orbitofrontal and ventrolateral prefrontal cortices is implicated in anxiety and mood disorders, but the specific contributions of each region are unknown, including how they gate the impact of threat on decision making. To address this, the effects of GABAergic inactivation of these regions were studied in marmoset monkeys performing an instrumental approach-avoidance decision-making task that is sensitive to changes in anxiety. Inactivation of either region induced a negative bias away from punishment that could be ameliorated with anxiolytic treatment. However, whereas the effects of ventrolateral prefrontal cortex inactivation on punishment avoidance were seen immediately, those of orbitofrontal cortex inactivation were delayed and their expression was dependent upon an amygdala-anterior hippocampal circuit. We propose that these negative biases result from deficits in attentional control and punishment prediction, respectively, and that they provide the basis for understanding how distinct regional prefrontal dysregulation contributes to the heterogeneity of anxiety disorders with implications for cognitive-behavioral treatment strategies.All authors contributed extensively to the work presented in this article, and we thank Rudolf Cardinal for helpful advice and discussion and Mercedes Arroyo for histology. This research was funded by a Medical Research Council Programme Grant (to A.C.R.) and Career Development Award (to H.F.C.). The research was conducted at the Behavioural and Clinical Neuroscience Institute, which is supported by a joint award from the Medical Research Council and Wellcome Trust (G00001354).This is the accepted manuscript of a paper published in PNAS (Clarke HF, Horst NK, Roberts AC, PNAS 2015, 112, 13, 4176-4181, doi:10.1073/pnas.1422440112). The final version is available at http://dx.doi.org/10.1073/pnas.142244011

    Opposing roles of primate areas 25 and 32 and their putative rodent homologs in the regulation of negative emotion

    Get PDF
    Disorders of dysregulated negative emotion such as depression and anxiety also feature increased cardiovascular mortality and decreased heart-rate variability (HRV). These disorders are correlated with dysfunction within areas 25 and 32 of the ventromedial prefrontal cortex (vmPFC), but a causal relationship between dysregulation of these areas and such symptoms has not been demonstrated. Furthermore, cross-species translation is limited by inconsistent findings between rodent fear extinction and human neuroimaging studies of negative emotion. To reconcile these literatures, we applied an investigative approach to the brain–body interactions at the core of negative emotional dysregulation. We show that, in marmoset monkeys (a nonhuman primate that has far greater vmPFC homology to humans than rodents), areas 25 and 32 have causal yet opposing roles in regulating the cardiovascular and behavioral correlates of negative emotion. In novel Pavlovian fear conditioning and extinction paradigms, pharmacological inactivation of area 25 decreased the autonomic and behavioral correlates of negative emotion expectation, whereas inactivation of area 32 increased them via generalization. Area 25 inactivation also increased resting HRV. These findings are inconsistent with current theories of rodent/primate prefrontal functional similarity, and provide insight into the role of these brain regions in affective disorders. They demonstrate that area 32 hypoactivity causes behavioral generalization relevant to anxiety, and that area 25 is a causal node governing the emotional and cardiovascular symptomatology relevant to anxiety and depression.This research was funded by Medical Research Council Career Development Award RG62920 (to H.F.C.). It was conducted at the Behavioural and Clinical Neuroscience Institute, which is supported by Joint Award G00001354 from the Medical Research Council and Wellcome Trust

    Cost-utility analysis of adding abiraterone acetate plus prednisone/prednisolone to long-term hormone therapy in newly diagnosed advanced prostate cancer in England: Lifetime decision model based on STAMPEDE trial data

    Get PDF
    Adding abiraterone acetate (AA) plus prednisolone (P) to standard of care (SOC) improves survival in newly diagnosed advanced prostate cancer (PC) patients starting hormone therapy. Our objective was to determine the value for money to the English National Health Service (NHS) of adding AAP to SOC. We used a decision analytic model to evaluate cost-effectiveness of providing AAP in the English NHS. Between 2011-2014, the STAMPEDE trial recruited 1917 men with high-risk localised, locally advanced, recurrent or metastatic PC starting first-line androgen-deprivation therapy (ADT), and they were randomised to receive SOC plus AAP, or SOC alone. Lifetime costs and quality-adjusted life-years (QALYs) were estimated using STAMPEDE trial data supplemented with literature data where necessary, adjusting for baseline patient and disease characteristics. British National Formulary (BNF) prices (£98/day) were applied for AAP. Costs and outcomes were discounted at 3.5%/year. AAP was not cost-effective. The incremental cost-effectiveness ratio (ICER) was £149,748/QALY gained in the non-metastatic (M0) subgroup, with 2.4% probability of being cost-effective at NICE's £30,000/QALY threshold; and the metastatic (M1) subgroup had an ICER of £47,503/QALY gained, with 12.0% probability of being cost-effective. Scenario analysis suggested AAP could be cost-effective in M1 patients if priced below £62/day, or below £28/day in the M0 subgroup. AAP could dominate SOC in the M0 subgroup with price below £11/day. AAP is effective for non-metastatic and metastatic disease but is not cost-effective when using the BNF price. AAP currently only has UK approval for use in a subset of M1 patients. The actual price currently paid by the English NHS for abiraterone acetate is unknown. Broadening AAP's indication and having a daily cost below the thresholds described above is recommended, given AAP improves survival in both subgroups and its cost-saving potential in M0 subgroup

    New insights into the classification and nomenclature of cortical GABAergic interneurons.

    Get PDF
    A systematic classification and accepted nomenclature of neuron types is much needed but is currently lacking. This article describes a possible taxonomical solution for classifying GABAergic interneurons of the cerebral cortex based on a novel, web-based interactive system that allows experts to classify neurons with pre-determined criteria. Using Bayesian analysis and clustering algorithms on the resulting data, we investigated the suitability of several anatomical terms and neuron names for cortical GABAergic interneurons. Moreover, we show that supervised classification models could automatically categorize interneurons in agreement with experts' assignments. These results demonstrate a practical and objective approach to the naming, characterization and classification of neurons based on community consensus

    Repair of Acute Respiratory Distress Syndrome in COVID-19 by Stromal Cells (REALIST-COVID Trial):A Multicentre, Randomised, Controlled Trial

    Get PDF
    RationaleMesenchymal stromal cells (MSCs) may modulate inflammation, promoting repair in COVID-19-related Acute Respiratory Distress Syndrome (ARDS).ObjectivesWe investigated safety and efficacy of ORBCEL-C (CD362-enriched, umbilical cord-derived MSCs) in COVID-related ARDS.MethodsThis multicentre, randomised, double-blind, allocation concealed, placebo-controlled trial (NCT03042143) randomised patients with moderate-to-severe COVID-related ARDS to receive ORBCEL-C (400million cells) or placebo (Plasma-Lyte148).MeasurementsThe primary safety and efficacy outcomes were incidence of serious adverse events and oxygenation index at day 7 respectively. Secondary outcomes included respiratory compliance, driving pressure, PaO2/FiO2 ratio and SOFA score. Clinical outcomes relating to duration of ventilation, length of intensive care unit and hospital stays, and mortality were collected. Long-term follow up included diagnosis of interstitial lung disease at 1 year, and significant medical events and mortality at 2 years. Transcriptomic analysis was performed on whole blood at day 0, 4 and 7.Main results60 participants were recruited (final analysis n=30 ORBCEL-C, n=29 placebo: 1 in placebo group withdrew consent). 6 serious adverse events occurred in the ORBCEL-C and 3 in the placebo group, RR 2.9(0.6-13.2)p=0.25. Day 7 mean[SD] oxygenation index did not differ (ORBCEL-C 98.357.2], placebo 96.667.3). There were no differences in secondary surrogate outcomes, nor mortality at day 28, day 90, 1 or 2 years. There was no difference in prevalence of interstitial lung disease at 1year nor significant medical events up to 2 years. ORBCEL-C modulated the peripheral blood transcriptome.ConclusionORBCEL-C MSCs were safe in moderate-to-severe COVID-related ARDS, but did not improve surrogates of pulmonary organ dysfunction. Clinical trial registration available at www.Clinicaltrialsgov, ID: NCT03042143. This article is open access and distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/)

    National and regional estimates of term and preterm babies born small for gestational age in 138 low-income and middle-income countries in 2010.

    Get PDF
    BACKGROUND: National estimates for the numbers of babies born small for gestational age and the comorbidity with preterm birth are unavailable. We aimed to estimate the prevalence of term and preterm babies born small for gestational age (term-SGA and preterm-SGA), and the relation to low birthweight (<2500 g), in 138 countries of low and middle income in 2010. METHODS: Small for gestational age was defined as lower than the 10th centile for fetal growth from the 1991 US national reference population. Data from 22 birth cohort studies (14 low-income and middle-income countries) and from the WHO Global Survey on Maternal and Perinatal Health (23 countries) were used to model the prevalence of term-SGA births. Prevalence of preterm-SGA infants was calculated from meta-analyses. FINDINGS: In 2010, an estimated 32·4 million infants were born small for gestational age in low-income and middle-income countries (27% of livebirths), of whom 10·6 million infants were born at term and low birthweight. The prevalence of term-SGA babies ranged from 5·3% of livebirths in east Asia to 41·5% in south Asia, and the prevalence of preterm-SGA infants ranged from 1·2% in north Africa to 3·0% in southeast Asia. Of 18 million low-birthweight babies, 59% were term-SGA and 41% were preterm-SGA. Two-thirds of small-for-gestational-age infants were born in Asia (17·4 million in south Asia). Preterm-SGA babies totalled 2·8 million births in low-income and middle-income countries. Most small-for-gestational-age infants were born in India, Pakistan, Nigeria, and Bangladesh. INTERPRETATION: The burden of small-for-gestational-age births is very high in countries of low and middle income and is concentrated in south Asia. Implementation of effective interventions for babies born too small or too soon is an urgent priority to increase survival and reduce disability, stunting, and non-communicable diseases. FUNDING: Bill & Melinda Gates Foundation by a grant to the US Fund for UNICEF to support the activities of the Child Health Epidemiology Reference Group (CHERG)

    Dickkopf1 Regulates Fate Decision and Drives Breast Cancer Stem Cells to Differentiation: An Experimentally Supported Mathematical Model

    Get PDF
    BACKGROUND: Modulation of cellular signaling pathways can change the replication/differentiation balance in cancer stem cells (CSCs), thus affecting tumor growth and recurrence. Analysis of a simple, experimentally verified, mathematical model suggests that this balance is maintained by quorum sensing (QS). METHODOLOGY/PRINCIPAL FINDINGS: To explore the mechanism by which putative QS cellular signals in mammary stem cells (SCs) may regulate SC fate decisions, we developed a multi-scale mathematical model, integrating extra-cellular and intra-cellular signal transduction within the mammary tissue dynamics. Preliminary model analysis of the single cell dynamics indicated that Dickkopf1 (Dkk1), a protein known to negatively regulate the Wnt pathway, can serve as anti-proliferation and pro-maturation signal to the cell. Simulations of the multi-scale tissue model suggested that Dkk1 may be a QS factor, regulating SC density on the level of the whole tissue: relatively low levels of exogenously applied Dkk1 have little effect on SC numbers, whereas high levels drive SCs into differentiation. To verify these model predictions, we treated the MCF-7 cell line and primary breast cancer (BC) cells from 3 patient samples with different concentrations and dosing regimens of Dkk1, and evaluated subsequent formation of mammospheres (MS) and the mammary SC marker CD44(+)CD24(lo). As predicted by the model, low concentrations of Dkk1 had no effect on primary BC cells, or even increased MS formation among MCF-7 cells, whereas high Dkk1 concentrations decreased MS formation among both primary BC cells and MCF-7 cells. CONCLUSIONS/SIGNIFICANCE: Our study suggests that Dkk1 treatment may be more robust than other methods for eliminating CSCs, as it challenges a general cellular homeostasis mechanism, namely, fate decision by QS. The study also suggests that low dose Dkk1 administration may be counterproductive; we showed experimentally that in some cases it can stimulate CSC proliferation, although this needs validating in vivo
    • …
    corecore