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Significance Statement 

 

Fear of negative outcomes has a powerful adverse influence on decision making in anxiety 

disorders. While neuroimaging studies of patients with anxiety disorders have revealed 

dysregulation in numerous frontal brain regions including the orbitofrontal and ventrolateral 

prefrontal cortex, the causal involvement of this dysregulation is unknown. Here we 

demonstrate that in the marmoset monkey, inactivation of anterior orbitofrontal or 

ventrolateral prefrontal cortex increases negative bias in decision making via two distinct 

cognitive mechanisms – elevated uncertainty and attentional disruption, respectively. These 

findings provide the first direct evidence that dysregulation of distinct neurocognitive 

mechanisms within the prefrontal cortex may underlie the mixed aetiology of anxiety 

disorders. Such insight will allow the development of more precise diagnostics and 

individually tailored therapeutic approaches.  

 

 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/77407868?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:hfc23@cam.ac.uk


2 
 

 

 

Abstract 

Dysregulation of the orbitofrontal (OFC) and ventrolateral (vlPFC) prefrontal cortices is 

implicated in anxiety and mood disorders but the specific contributions of each region are 

unknown, including how they gate the impact of threat on decision making. To address this, 

the effects of GABAergic inactivation of these regions were studied in marmoset monkeys 

performing an instrumental approach-avoidance decision-making task that is sensitive to 

changes in anxiety. Inactivation of either region induced a negative bias away from 

punishment that could be ameliorated with anxiolytic treatment. However, whereas the 

effects of vlPFC inactivation on punishment avoidance were seen immediately, those of OFC 

inactivation were delayed and their expression dependent upon an amygdala-anterior 

hippocampal circuit.  We propose that these negative biases result from deficits in attentional 

control and punishment prediction, respectively and that they provide the basis for 

understanding how distinct regional prefrontal dysregulation contributes to the heterogeneity 

of anxiety disorders with implications for cognitive-behavioural treatment strategies. 

\body 

Introduction 

Sensitivity to threat, and the appropriate interpretation of potential threat, is crucial for an 

organism to survive and make optimal decisions with respect to its environment. Over-

estimation of threat, and hypersensitivity to negative emotional information are known to 

inappropriately impact cost/benefit decision making in patients suffering from anxiety and 

depression (1, 2). This hypersensitivity is thought to be due to dysregulation within the 
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prefrontal cortex (PFC), but how the PFC contributes to aversive processing and how it gates 

the impact of negative emotional information on decision making is still poorly understood. 

There are a number of distinct brain regions within the PFC that are dysregulated in anxiety 

and mood disorders including the orbitofrontal (OFC), ventrolateral prefrontal (vlPFC) and 

medial prefrontal (mPFC) cortices (3–5). Of these, a region within mPFC (pregenual 

cingulate cortex) has been implicated in regulating negative emotional valence in decision 

making (6), but the contribution of the other regions remain unknown. Given the lifetime 

prevalence and economic cost of anxiety and depression (7), understanding how these distinct 

prefrontal subregions modulate the impact of emotion on decision making is crucial in order 

to identify how different types of prefrontal dysregulation contribute to the heterogeneity of 

anxiety and mood disorders and thus guide the development of personalised treatments. 

Despite the uncertainty regarding the rodent correlates of these other prefrontal regions, in 

particular vlPFC, there have been few studies investigating the selective contribution of these 

other prefrontal regions to negative decision making in primates, as most primate studies 

focus on reward guided decision making (8, 9) but see (10–13). However, we showed 

previously that selective excitotoxic lesions of either anterior OFC (antOFC; area 11) or 

vlPFC (area 12) heighten anxiety and pavlovian fear responses in marmoset monkeys, 

demonstrating that both regions contribute independently to the regulation of negative 

emotion (14), but their differential contribution and their involvement in modulating the 

impact of anxiety on decision making remains unknown. To address this, we developed an 

approach-avoidance conflict task suitable for marmoset monkeys, and used anatomically 

specific intracerebral infusions and anxiolytic drug treatment to determine how temporary 

inactivation of these regions affected cost/benefit decision making. 

Results 
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Marmosets were trained to respond to two identical visual stimuli presented on each side of a 

touchscreen to gain access to reward (5s banana juice) that were on independent but identical 

variable-interval schedules (VI, 15s; Figure 1a). Thus the optimal strategy for maximising 

reward delivery is to respond relatively equally to both stimuli. Marmosets did this whilst 

showing a slight preference for one side over the other. See Figure 1b.  Approximately once a 

week, responses on one of the stimuli also produced punishment, an aversive loud noise 

(0.3s, 117dB) on a leaner independent variable-interval schedule (VI 40s) that was 

superimposed upon the existing reward schedule. This punishment was always introduced 

onto the marmosets’ ‘preferred’ side to avoid any spatial bias contributing to a punishment-

induced bias. In the absence of reward, this loud noise, when paired with a neutral cue, has 

been shown to induce Pavlovian conditioned cardiovascular arousal and behavioral vigilance 

(14), indicative of its aversive properties. By combining the aversive noise with reward, this 

task measures the extent of avoidance of the punished schedule when this conflicts with a 

competing approach response for reward. In the absence of any brain manipulation or 

following saline infusions, the addition of the punishment on one side did not alter the 

animals’ responding i.e they did not alter their behaviour to avoid it  (F1,7 = 0.16, P = 0.698; 

see Figure 1b).Thus, it would appear that in the control condition, the animals still find the 

reward ‘worth’ responding for, despite the occasional punishment it incurs (14). Following 

implantation of intracerebral cannulae targeting either the antOFC (area 11) or vlPFC (area 

12; Fig 1c,d), these cortical regions were then inactivated bilaterally with a GABA agonist 

mixture (0.5 μl of 0.1 mM muscimol/1.0 mM baclofen) (15, 16) or saline, 20 min prior to 

reward-only or reward and punishment test sessions to determine their contribution to the 

integration of reward and punishment in decision making. 

 

Inactivation of the vlPFC and antOFC induce a negative decision bias on different timescales 
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Inactivation of either the vlPFC or antOFC had no effect on responding when stimuli on both 

sides of the screen produced only reward: monkeys maintained the same level of responding 

and continued to respond to both sides equally. In contrast, when punishment was introduced 

on one side only, inactivation of either area induced a bias in responding away from the 

punished side. (Response biases were calculated as the ratio between the number of responses 

to the monkey’s non-preferred side and the preferred side on an inactivation day and 

compared to the same measure on a saline infusion day). However, these effects differed as to 

whether they were seen on the infusion day (day 1/infusion day), or on the next day (day 2; 

three way interaction on sqrt transformed data on extent of bias, feedback(just reward, or 

reward and punishment on a given side) x day(day1, day 2) x group (antOFC, vlPFC), F1,6 = 

22.02, P = 0.003; day x group (reward only), F1,6 >1; day x group (punishment and reward 

combined), F1,6 = 24.29, P = 0.003; Fig 2a). Following control infusions of saline, all animals 

continued to respond for reward in the presence of punishment, whereas inactivation of the 

vlPFC resulted in a marked bias in responding away from the punished side and an increase 

in responding to the non-punished (reward only) side. This bias developed during the 

punished session (day 1) but no delayed/long lasting effects were seen the following day 

when punishment was absent (posthoc analysis: high bias day 1 vs no bias day 2, t3 = -3.996, 

P = 0.028). In contrast, and similar to control infusions, inactivation of the antOFC had no 

effect on responding on the punished session. However, unlike control infusions or vlPFC 

inactivation, it did result in a profound bias away from the previously punished side on the 

following (reward-only) day (no bias day 1 vs high bias day 2, t3 = 3.264, P = 0.047). Neither 

manipulation resulted in alterations in overall numbers of responses, ruling out any effects 

due to changes in Pavlovian driven punishment-induced suppression of responding (Fig 2b). 

The differential pattern of effects suggests that inactivation of the vlPFC altered the cost-

benefit analysis at the time of the decision, while inactivation of the antOFC affected the 



6 
 

consolidation of a memory for the punishment that was sufficient to drive the anti-

punishment bias the following day. 

 

 

An anxiolytic abolished the antOFC and vlPFC inactivation-induced negative decision bias.   

Given that permanent lesions of both these prefrontal regions enhance anxiety (14), it was 

possible that these inactivation-induced biases were due to an increase in anxiety-related 

behaviour.  We therefore determined whether these biases away from punishment could be 

blocked by a known anxiolytic drug. Administration of diazepam (0.25mg/kg i.m. vs saline, 

Fig 3), 30 mins prior to the punished session (day 1) abolished not only the anti-punishment 

bias induced by vlPFC inactivation on the same day (t3 = 10.25, P = 0.002) but also abolished 

the delayed (day 2) anti-punishment bias induced by antOFC inactivation (t3 = 10.404, P = 

0.002).  Furthermore, diazepam also reduced the expression of the effects of day 1, antOFC 

inactivation when given before the reward-only, non-infusion session on day 2 (t3 = 10.04, P 

= 0.002; see table S1 for infusion order). Together these findings suggest an anxiety-like state 

underpinned the effects of vlPFC inactivation on ‘on-line’ cost-benefit analysis and the 

effects of antOFC inactivation on a punishment memory. 

 

Inactivation of the antOFC modulates a punishment memory within an amygdala-

hippocampal circuit 

The anti-punishment bias seen the day after antOFC inactivation suggests that learning to 

predict the punishment and the formation of a punishment memory is normally modulated by 

the antOFC. Two likely subcortical candidates for the location or expression of such a 

punishment memory are the amygdala and the anterior hippocampus. Both structures are 
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implicated in emotional processing and are connected to the antOFC and to each other (17). 

To investigate their contribution to the expression of the anti-punishment bias, we cannulated 

the amygdala (Fig 4a,c) and anterior hippocampus (Fig 4a,d) bilaterally in three of the 

antOFC-cannulated animals. AntOFC inactivation on the punishment day was followed the 

next day by inactivation of the amygdala bilaterally, hippocampus bilaterally, or both, 

unilaterally, in a crossed disconnection, before testing. These infusions were compared to the 

effects of identical amygdala/hippocampal manipulations the day after punishment, but in the 

absence of antOFC inactivation. Throughout these infusions, the bias away from the punished 

side induced by antOFC inactivation alone was still present and no different from its first 

presentation (t2 = 0.177, P = 0.876). However, bilateral inactivation of either the anterior 

hippocampus (t2 = 11.808, P = 0.007) or the amygdala (t2 = 10.185, P = 0.01) on day 2, 

abolished the bias away from the punished side that was induced by antOFC inactivation on 

day 1, confirming the involvement of these structures in the expression of increased 

punishment sensitivity after antOFC inactivation. Disconnecting the amygdala from the 

hippocampus by inactivating one side of each structure in opposite hemispheres, whilst 

leaving the other sides intact, had the same effect as bilateral inactivations of either structure 

(t2 = 10.197, P = 0.009), indicating that the expression of this behaviour is subserved by a 

functional amygdala-hippocampal circuit (Fig 4b).  

 

Discussion 

These results reveal the critical but dissociable roles played by the vlPFC and the antOFC in 

modulating the impact of threat-induced anxiety on instrumental cost-benefit decisions, and 

provide insight into the distinct contributions that each region makes to decision making. 

Inactivation of the vlPFC but not the antOFC increased punishment avoidance when making 

decisions between primary, unconditioned rewards and punishments. In contrast, antOFC 
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inactivation had no effect on the decision making process per se but affected the memory for 

punishment, increasing avoidance of the previously punished side the next day, in the absence 

of explicit punishment.  

There have only been a handful of studies investigating the effects of neural interventions 

restricted to the vlPFC e.g. (18, 19) but we have previously demonstrated its importance for 

orienting/shifting attention to reward-relevant stimuli in marmosets (20), a finding  supported 

by neuroimaging and electrophysiological studies implicating this region in attentional 

control (21, 22). We now propose that a deficit in attentional control underlies the increase in 

punishment avoidance induced by vlPFC inactivation. Specifically, we suggest that to make a 

cost-benefit decision, attention needs to be shifted away from the highly salient, negative 

outcome (the punishment), and towards the positive (rewarding) outcome, to facilitate 

comparison of the relative values of the reward and punishment. In the intact animal, the 

vlPFC provides top-down attentional control that allows the rewarding outcome to gain such  

attention, providing the animal with the opportunity to consider both reward and punishment 

when responding on that side. However, when an animal with an inactivated vlPFC responds 

to the punished side, the highly salient, aversive outcome captures their attention as before, 

but they fail to shift their attention to the less salient, rewarding outcome also present on that 

side.  Consequently they focus on the punishment at the expense of the reward, and bias their 

responding away from the punished side.  Thus, a failure to shift attention by either 

inadequate vlPFC recruitment or vlPFC inactivation disrupts the cost-benefit analysis by 

allowing the subject’s choice to be unduly influenced by the negative outcome (3). 

 

A similar explanation may account for the activation of human vlPFC that accompanies 

cognitive re-appraisal of emotional stimuli (23) (see also 24). Cognitive re-appraisal of a 

negatively-valenced picture requires subjects to shift their attention to potentially less salient, 
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but more positive interpretations of the picture, in order to diminish its negative affect. Thus, 

both cost-benefit decision making, as studied here, and cognitive re-appraisal may depend 

upon the attentional control functions of the vlPFC for the re-interpretation of emotional 

stimuli (25). Note that such re-interpretation is distinct from the situation that occurs in 

extinction, in which a negatively-valenced stimulus loses its negative valence, the latter 

having been shown to recruit primarily, ventromedial regions of PFC (26, 27). In the current 

task, the aversive stimulus does not lose its aversiveness, but instead we suggest that vlPFC-

mediated attentional shifting facilitates the re-interpretation or re-evaluation of the aversive 

stimulus in the context of the competing reward.  

 

It is unknown how the attentional-shifting role of the vlPFC is integrated into the decision 

making circuitry. The vlPFC region targeted here (area 12 including 12l, 12m and 12o) sends 

projections to both the mPFC and OFC  (28, 29) but the relative contribution of these 

projections is unknown. However, while mPFC manipulations have been shown to cause 

immediate alterations in cost-benefit decision making (6), inactivation of the OFC in the 

present study did not, making it unlikely that interactions between vlPFC and antOFC were 

contributing to performance. Instead, projections from the vlPFC to the mPFC may provide 

the appropriate attentional bias, optimising the mPFC-mediated decision making process. 

 

In contrast to the vlPFC, antOFC inactivation had no effect on the cost-benefit decision 

between primary reward and punishment but did result in a marked bias away from the 

punished side the following day, in the absence of punishment. This effect was blocked by 

inactivation of either the anterior hippocampus, amygdala or disconnection of the two, 

revealing the important role of the antOFC in moderating the formation of a punishment 
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memory, the expression of which is dependent upon an amygdala-anterior hippocampal 

circuit. Whether the punishment memory is also stored within this circuit remains to be 

determined. The OFC is implicated in the learning of stimulus-outcome relationships (9, 30). 

By learning to predict the presence of punishment, particularly in an environment in which 

punishment is sporadic, as in the present task, the antOFC may act to lessen the uncertainty 

about, and consequently the impact of, punishment, especially since uncertainty is a critical 

factor in the generation of anxiety (31). Of particular importance in the present study is the 

finding that despite intact decision making in the presence of punishment, inactivation of the 

antOFC caused aberrant consolidation of the emotionally arousing stimuli, leading to 

abnormal avoidance behaviour when confronted with a similar situation the subsequent day. 

Although the increased avoidance behavior seen after OFC inactivation rapidly returned to 

normal when the OFC was no longer inactivated, an OFC that is functionally compromised 

for longer may have deleterious psychopathological consequences for the amygdala and 

hippocampus, such as the potentiated punishment sensitivity seen in anxiety conditions. Such 

a proposal would provide a functional counterpart for findings that ventromedial (including 

OFC) PFC thickness correlates negatively with both amygdala/hippocampal activity and 

measures of anxiety (32, 33). 

  

The amygdala and hippocampus are associated independently with anxiety, and anxiolysis 

(34), and increased grey matter density or activity in both structures is associated with 

increased sensitivity to negative stimuli (35).  Both structures also have well established roles 

in the enhancement of memory for emotionally arousing events (36), which is consistent with 

the current findings that inactivation of either structure independently abolished the 

expression of the negative bias induced by OFC inactivation. However, the effects of crossed 

disconnection of the two emphasises the importance of their interaction in the expression of 
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this negative bias, which is consistent with the increased amygdala-hippocampal connectivity 

associated with trait sensitivity to aversive events and neuroticism (37, 38). The strength of 

amygdala-hippocampus connectivity has also been shown to increase bidrectionally during 

the retrieval of emotional information that is relevant to current behaviour, confirming the 

importance of their interaction (39, 40). However, until now the role of amygdala-

hippocampal communication has been considered predominantly in the context of amygdala-

mPFC connectivity and fear regulation (37, 41). The current findings reveal the importance 

of the OFC for modulating plasticity within this circuit in the regulation of anxious 

behaviour.  Future studies will determine how the vlPFC interacts with subcortical structures 

such as the hippocampus and amygdala to regulate emotional decision making. 

 

To conclude, we have shown that dysregulation of vlPFC and antOFC and their subcortical 

connections induce distinct patterns of punishment bias in an approach-avoidance conflict 

task. It is proposed that these biases are caused, respectively, by deficits in attentional control 

and punishment prediction. The differentiation of the component neural mechanisms 

underlying punishment processing revealed in the present study provides important new 

insight into the heterogeneity of mood and anxiety disorders, increasing our ability to predict 

the efficacy of specific treatment strategies in individual patients. For example, based on the 

present results, cognitive re-appraisal, a common component of Cognitive-Behavioural 

therapy, may be more successful in a patient poor at predicting, than one deficient in 

attentional control. These findings also highlight the importance of primate models for 

translational research, as such a detailed anatomical segregation of function between antOFC 

and vlPFC would not have been possible in species that do not share prefrontal homology 

with humans. Altogether, these findings advance our understanding of the prefrontal 
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organisation of executive functions, demonstrating the distinct role of prefrontal regions in 

the decision making process.  

Materials and Methods 

Subjects and Housing 

Eight common marmosets (Callithrix jacchus; 3 females, 5 males) bred on site at the 

University of Cambridge Marmoset Breeding Colony were housed in pairs. All monkeys 

were fed 20 g of MP.E1 primate diet (Special Diet Services, Withams, Essex, UK) and two 

pieces of carrot five days a week after the daily behavioral testing session, with simultaneous 

free access to water for two hours.  At weekends, their diet was supplemented with fruit, rusk, 

malt loaf, eggs, bread and treats and they had free access to water.  Their cages contained a 

variety of environmental enrichment aids that were varied regularly and all procedures were 

performed in accordance with the UK Animals (Scientific Procedures) Act 1986.   

Apparatus 

Behavioral testing took place within a sound-attenuated box in a dark room.  The animal sat 

in a clear, plastic transport box, one side of which was removed to allow the marmoset to 

reach through an array of vertical metal bars to touch stimuli presented on a touch-sensitive 

computer monitor (Campden Instruments, UK). When appropriate a reward of cooled banana 

milkshake (Nestlé, York, UK) was delivered to a centrally placed spout for 5 s, or a brief 

mildly aversive loud noise (0.3 s, 117dB) was played from a siren located centrally at the 

back of the test chamber. The test chamber was lit with a 3 W bulb. The stimuli presented on 

the monitor were green circles (40 mm diameter) with a small black dot in the middle (5mm 

diameter) which were displayed to the left and right of the central spout via the Whisker 

control system (42). 
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Behavioral Training and Testing 

All monkeys were trained initially to enter a clear plastic transport box for marshmallow 

reward and accustomed to the test apparatus. Monkeys were then familiarized with the 

milkshake reward, and taught to respond to the touchscreen for reward until they were 

reliably and accurately making 30 responses or more to a green square presented to the left or 

right of the licker in 20 minutes (for full experimental details, see 43). The stimuli were then 

changed to green circles and a variable interval (VI) schedule introduced gradually until the 

monkeys were happily responding to both stimuli equally. Reward was presented to each 

stimulus on an independent VI schedule, each with a mean schedule of 15 s (ranging from 5 

to 25s in increments of 5s). All monkeys made approximately the same number for responses 

to both sides of the screen.  If a response was rewarded, the stimulus remained on the screen 

for the duration of reward (5s). The aversive noise was then introduced. Initial presentations 

were at 90dB, which incremented gradually up to 117 dB with little or no deleterious effects 

on performance. If a response was unrewarded, the stimuli disappeared and then immediately 

reappeared to signal the start of the next trial.  If a response was punished the stimuli 

disappeared, the aversive noise sounded (0.3 s) and the stimuli immediately reappeared as 

before. The testing period was limited only by time, and the session length was 12 minutes. 

The monkeys made an average of 150 responses during this time (75 to the left and 75 to the 

right; see Figure 1b).  Once trained, the monkeys received cannulation surgery. 

Cannulation surgery 

Subjects were premedicated with ketamine hydrochloride (Pharmacia and Upjohn, 0.05 ml of 

a 100 mg/ml solution, i.m.) and given a long-lasting prophylactic analgesic (Carprieve; 0.03 

ml of 50 mg/ml carprofen, s.c.; Pfizer, Kent, UK). They were intubated and maintained on 

isoflurane gas anaesthetic (flow rate: 2.0–2.5% isoflurane in 0.3 l/min O2; Novartis Animal 
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Health UK, Herts, UK) and placed in a stereotaxic frame modified for the marmoset (David 

Kopf, Tujanga, CA, USA). Anaesthesia was monitored clinically and by pulse oximetry with 

capnography. Cannulae (Plastics One, Roanoke, VA, USA) were implanted into the 

ventrolateral prefrontal cortex (double 6mm long cannulae, 1mm apart, anteroposterior [AP] 

+ 17.25/18.25, lateromedial [LM] adjusted in situ to give depth greater than 3mm at 8
0
) or the  

anterior OFC (single 6mm long cannula, AP + 17, LM ± 3) having been adjusted where 

necessary in situ according to cortical depth (28). In the antOFC-cannulated animals, 

amygdala (single 14 mm long cannula, AP + 9.3, LM ± 5.6, ventral [V] + 5) and anterior 

hippocampal  (double 15 mm long cannula,1mm apart, AP + 6, LM ± 5.75/7.75, V + 5) 

cannulae were added separately in an additional surgery. However one antOFC-cannulated 

animal broke his leg and was euthanased prior to this. Postoperatively, and when fully 

recovered, all monkeys were returned to their homecage and then received the analgesic 

meloxicam (0.1 ml of a 1.5 mg/ml oral suspension; Boehringer Ingelheim, Germany) for 3 

days as well as 10 days of ‘weekend diet’ and water ad libitum to allow complete recovery 

before returning to testing. Cannulae were cleaned every week (and caps and cannula 

blockers changed) to ensure the cannula site remained free from infection. 

Drug treatments 

For all infusions the monkey was held gently by a researcher. For central infusions, the caps 

and cannula blockers were removed and the site cleaned with alcohol. The sterile injector was 

inserted into the cannula and saline or muscimol/baclofen (0.5 μl of 0.1 mM muscimol/1.0 

mM baclofen) infused at a rate of 0.25μl/min for 2 mins. Injectors were left in place for 1 

minute to allow diffusion of liquid before being removed, clean caps and dummies applied, 

and the monkey returned to the homecage for 20 mins. See table S1 for infusion order.  In all 

cases the punishment sessions were intermittently interspersed between reward sessions, and 

occurred approximately once per week.  The punishment was always presented on the side on 
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which the monkey responded to most the preceding day.  Thus the location of punishment 

varied both between monkey, and between individual testing sessions for a given monkey. 

Infusions usually occurred twice a week (one saline treatment and one drug treatment) in a 

randomised order between groups.  There was one session per subject per condition. For 

peripheral injections the site of injection was cleaned with alcohol, and then injected with 

either diazepam (0.25mg/kg, i.m,Wockhardt Ltd, UK) or an equal volume of saline 30 mins 

prior to testing. 

Analysis 

For each session, a bias measure was calculated for each animal.  This was the ratio of the 

number of responses made to the non-preferred side over the number of responses made to 

the preferred side (bias = non-preferred responses/ preferred responses).  To calculate the 

change in bias that resulted from any drug treatment, the drug induced bias was calculated as 

a percentage of the equivalent saline treatment.  Thus a bias measure of 100% indicates that 

the effect of drug treatment was identical to that of saline treatment.  A bias of above 100% 

indicates that the drug treatment induced a bias towards the non-preferred side i.e. away from 

the preferred (often punished) side, and a bias of less than 100% indicated a bias away from 

the non-preferred side and towards the preferred (and often punished) side.   

Post mortem lesion assessment 

All monkeys were premedicated with ketamine hydrochloride (Pharmacia and Upjohn, 0.05 

ml of a 100 mg/ml solution, i.m.) and humanely euthanased with Euthatal (1ml of a 200 

mg/ml solution, pentobarbital sodium; Merial Animal Health Ltd; i.p.) before being perfused 

transcardially with 500ml of 0.1M PBS, followed by 500ml of 4% paraformaldehyde fixative 

over approximately 15 mins. The entire brain was then removed and placed in further 

paraformaldehyde overnight before being transferred to a 30% sucrose solution for at least 48 
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hours. For verification of cannulae placement, coronal sections (60 μm) of the brain were cut 

using a freezing microtome, the cell bodies were stained using Cresyl Fast Violet and the 

sections viewed under a Leitz DMRD microscope. For each animal, cannula locations were 

schematized onto drawings of standard marmoset brain coronal sections and composite 

diagrams were then made to illustrate the extent of overlap between animals. 

Statistics 

Behavioral data were analysed using SPSS v.21 (IBM, NY, USA). For analysis of variance 

(ANOVA), homogeneity of variance was verified using Levene’s test; type III sums of 

squares and full factorial models were used unless stated. Where applicable, the Huynh–Feldt 

correction was used to correct for any violations of the sphericity assumption as assessed by 

the Greenhouse–Geisser test. For statistical purposes, this data was square-root transformed 

to normalise its distribution according to Levene’s test.  However for clarity, the data 

presented in the figures is not transformed. 
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Figure Legends 

Figure 1. Behavioral task and prefrontal cannulae placements. 

A. Responding to either of two identical visual stimuli presented to the left and right of a 

touch sensitive computer screen gained reward (5s banana juice) according to independent 

but identical variable-interval schedules. In occasional test sessions (average one per week), 

responding to one of the stimuli also resulted in punishment (0.3s 117dB loud noise) on a 

leaner independent variable-interval schedule, while the reward schedule was unchanged.  

B. Under control conditions marmosets responded relatively equally to both stimuli, with 

only a slight preference for one side. Accordingly that side received the punishment on 

punishment sessions and thus, overall, there is more responding to the ‘punished’ or ‘to be’ 

punished (P) side than the ‘non-punished’ or ‘to be’ non-punished (NP) side (F1,7 = 26.08, P = 

0.001). This remained the same regardless of whether punishment was present or not, (F1,7 = 
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0.16, P = 0.698; see text for detailed explanation of why animals in control conditions did not 

avoid punishment). 

C. Sagittal marmoset MRI section illustrating the rostro-caudal locations of the vlPFC and 

OFC for target infusions.  

D. Schematics showing the single and double intracerebral cannulae targeting respectively, 

area 11/antOFC and area 12/vlPFC, together with the actual cannulae locations for each 

animal and representative histological sections with arrows marking the position of the 

cannulae. All cannulae were located within the range of AP 15.8-16.6, plotted here on a single 

coronal section for each target area. Scale bar = 5mm. Cytoarchitectonic parcellation is 

according to Burman and Rosa, 2009 (44) and the circles represent the estimated maximal 

spread of the muscimol/baclofen or saline infusions (15). 

 

Figure 2. Inactivation of either the vlPFC or antOFC induces a negative decision bias, 

but on different timescales 

A. Inactivation of either the vlPFC or OFC did not affect responding when only reward was 

present (left two pairs of bars), but produced differential effects on responding when 

punishment was introduced (right two pairs of bars). vlPFC inactivation (green bars) caused a 

bias away from punishment on the day of punishment (‘infusion’ day), while OFC 

inactivation (blue bars) caused a bias away from punishment the day after (‘next’ day). B. 

The overall number of responses was not affected by either inactivation. The region of 

inactivation (‘vlPFC’ or ‘OFC’), the day of inactivation (‘infusion’ day or the ‘next’ day) and 

the presence of reward (blue droplet) and/or punishment (bell) are all indicated in the grid 

below the bars. A response bias of 100% indicates that an inactivation was identical to that of 
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saline treatment. See Materials and Methods for details of bias calculation.* P< 0.05 on 

square root transformed data. Data are represented as mean ± SEM 

Figure 3.  The negative decision biases were abolished by anxiolytic treatment 

A. The bias away from the punished side that is seen after vlPFC inactivation on a punished 

day (left dark green bar) was abolished by the concomitant presence of Diazepam (left light 

green bar). Next day performance was unaffected (right green bars). B. The bias away from 

the punished side that is seen on the next day after OFC inactivation on a punished day (right 

dark blue bar) was completely abolished when Diazepam was administered on the infusion 

day ( right mid-blue bar) and partially abolished when Diazepam was administered on the 

next day (right pale blue bar). P< 0.05 on square root transformed data. The region of 

inactivation (‘vlPFC’ or ‘OFC’), the day of inactivation (‘infusion’ day or the ‘next’ day) and 

the presence of diazepam (‘D’), reward (blue droplet) and punishment (bell) are all indicated 

in the grid below the bars. Data are represented as mean ± SEM. 

 

Figure 4. AntOFC inactivation modulates a punishment memory within an amygdala-

hippocampal circuit 

 

A. Sagittal marmoset MRI section illustrating the rostro-caudal coordinates of the antOFC, 

amygdala and anterior hippocampus for cannula placements (n=3). 

B. The effects of amygdala, and anterior hippocampal inactivation or their crossed 

disconnection on the next day, after antOFC inactivation on a punished day, were compared 

to the effects of amygdala/hippocampal manipulations on the next day, after punishment in 

the absence of antOFC inactivation. The bias away from the punished side that is seen on the 
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next day after OFC inactivation on a punished day (right dark blue bar compared to left dark 

blue bar) was completely abolished if the anterior hippocampus (right red bar), amygdala 

(right khaki bar) or a unilateral crossed disconnection of both (right purple bar) were also 

inactivated the next day. * P< 0.05 on square root transformed data . The region of 

inactivation (antOFC; ‘OFC’, amygdala; ‘Amyg’, hippocampus; ‘Hipp’, or 

hippocampal/amygdala disconnection; ‘H/A’), the day of inactivation (‘infusion’ day or the 

‘next’ day) and the presence of reward (blue droplet) and punishment (bell) are all indicated 

in the grid below the bars. Data are represented as mean ± SEM. 

C and D. Schematics illustrating the location of the amygdala and anterior hippocampal 

cannulae in a coronal section for each animal, alongside representative histological sections 

with arrows marking the position of the cannulae tracts. 


