358 research outputs found

    Transitioning to Team-Based Primary Care

    Get PDF

    e-Authentication for online assessment: A mixed-method study

    Get PDF
    Authenticating the students’ identity and authenticity of their work is increasingly important to reduce academic malpractices and for quality assurance purposes in Education. There is a growing body of research about technological innovations to combat cheating and plagiarism. However, the literature is very limited on the impact of e-authentication systems across distinctive end-users because it is not a widespread practice at the moment. A considerable gap is to understand whether the use of e-authentication systems would increase trust on e-assessment, and to extend, whether students’ acceptance would vary across gender, age and previous experiences. This study aims to shed light on this area by examining the attitudes and experiences of 328 students who used an authentication system known as adaptive trust-based e-assessment system for learning (TeSLA). Evidence from mixed-method analysis suggests a broadly positive acceptance of these e-authentication technologies by distance education students. However, significant differences in the students’ responses indicated, for instance, that men were less concerned about providing personal data than women; middle-aged participants were more aware of the nuances of cheating and plagiarism;while younger students were more likely to reject e-authentication, considerably due to data privacy and security and students with disabilities due to concerns about their special needs

    CAL Dataflow Components for an MPEG RVC AVC Baseline Encoder

    Get PDF
    In this paper, an efficient H.264/AVC baseline encoder, described in RVC-CAL actor language, is introduced. The main aim of the paper is twofold: a) to demonstrate the flexibility and ease that is provided by RVC-CAL, which allows for efficient implementation of the presented encoder, and b) to shed light on the advantages that can be brought into the RVC framework by including such encoding tools. The main modules of the designed encoder include: Inter Frame Prediction (Motion Estimation/Compensation), Intra Frame Prediction, and Entropy Coding. Descriptions of the designed modules, accompanied with RVC-CAL design issues are provided. A comparison between different development approaches is also provided. The obtained results show that specifying complex video codecs (e.g. H.264/AVC encoder) using RVC-CAL followed by automatic translation into HDL, which is achievable by the tools that support the standard, results in more efficient HW implementation compared to the traditional HW design flow. A discussion that explains the reasons behind such results concludes the pape

    CAL Dataflow Components For an MPEG RVC AVC Baseline Encoder

    Get PDF
    In this paper, an efficient H.264/AVC baseline encoder, described in RVC-CAL actor language, is introduced. The main aim of the paper is two folds: a) to demonstrate the flexibility and ease that is provided by RVC-CAL, which allows for efficient implementation of the presented encoder, and b) to shed light on the advantages that can be brought into the RVC framework by including such encoding tools. The main modules of the designed encoder include: Inter Frame Prediction (Motion Estimation/Compensation), Intra Frame Prediction, and Entropy Coding. Descriptions of the designed modules, accompanied with RVC-CAL design issues are provided. A comparison between different development approaches is also provided. The obtained results show that specifying complex video codecs (e.g. H.264/AVC encoder) using RVC-CAL followed by automatic translation into HDL, which is achievable by the tools that support the standard, results in more efficient HW implementation compared to the traditional HW design flow. A discussion that explains the reasons behind such results concludes the paper

    A generalised method for ratchet analysis of structures undergoing arbitrary thermo-mechanical load histories

    Get PDF
    A novel approach is presented based upon the Linear Matching Method framework in order to directly calculate the ratchet limit of structures subjected to arbitrary thermo-mechanical load histories. Traditionally, ratchet analysis methods have been based upon the fundamental premise of decomposing the cyclic load history into cyclic and constant components respectively, in order to assess the magnitude of additional constant loading a structure may accommodate before ratcheting occurs. The method proposed in this paper, for the first time, accurately and efficiently calculates the ratchet limit with respect to a proportional variation between the cyclic primary and secondary loads, as opposed to an additional primary load only. The method is a strain based approach and utilises a novel convergence scheme in order to calculate an approximate ratchet boundary based upon a predefined target magnitude of ratchet strain per cycle. The ratcheting failure mechanism evaluated by the method leads to less conservative ratchet boundaries compared to the traditional Bree solution. The method yields the total and plastic strain ranges as well as the ratchet strains for various levels of loading between the ratchet and limit load boundaries. Two example problems have been utilised in order to verify the proposed methodology

    Towards greater transparency and coherence in funding for sustainable marine fisheries and healthy oceans

    Get PDF
    This final manuscript in the special issue on “Funding for ocean conservation and sustainable fisheries” is the result of a dialogue aimed at connecting lead authors of the special issue manuscripts with relevant policymakers and practitioners. The dialogue took place over the course of a two-day workshop in December 2018, and this “coda” manuscript seeks to distil thinking around a series of key recurring topics raised throughout the workshop. These topics are collected into three broad categories, or “needs”: 1) a need for transparency, 2) a need for coherence, and 3) a need for improved monitoring of project impacts. While the special issue sought to collect new research into the latest trends and developments in the rapidly evolving world of funding for ocean conservation and sustainable fisheries, the insights collected during the workshop have helped to highlight remaining knowledge gaps. Therefore, each of the three “needs” identified within this manuscript is followed by a series of questions that the workshop participants identified as warranting further attention as part of a future research agenda. The crosscutting nature of many of the issues raised as well as the rapid pace of change that characterizes this funding landscape both pointed to a broader need for continued dialogue and study that reaches across the communities of research, policy and practice.S
    • 

    corecore