
CAL Dataflow Components for an MPEG RVC
AVC Baseline Encoder

Hussein Aman-Allah & Karim Maarouf & Ehab Hanna &

Ihab Amer & Marco Mattavelli

Received: 23 January 2009 /Revised: 20 April 2009 /Accepted: 18 June 2009 /Published online: 25 July 2009
2009 Springer Science + Business Media, LLC. Manufactured in The United States

Abstract In this paper, an efficient H.264/AVC baseline
encoder, described in RVC-CAL actor language, is intro-
duced. The main aim of the paper is twofold: a) to
demonstrate the flexibility and ease that is provided by
RVC-CAL, which allows for efficient implementation of
the presented encoder, and b) to shed light on the
advantages that can be brought into the RVC framework
by including such encoding tools. The main modules of the
designed encoder include: Inter Frame Prediction (Motion
Estimation/Compensation), Intra Frame Prediction, and
Entropy Coding. Descriptions of the designed modules,
accompanied with RVC-CAL design issues are provided. A
comparison between different development approaches is
also provided. The obtained results show that specifying
complex video codecs (e.g. H.264/AVC encoder) using
RVC-CAL followed by automatic translation into HDL,
which is achievable by the tools that support the standard,
results in more efficient HW implementation compared to
the traditional HW design flow. A discussion that explains
the reasons behind such results concludes the paper.

Keywords Reconfigurable video coding .

MPEG video tool library . CAL actor language .

H.264/AVC baseline profile

1 Introduction

1.1 RVC Standard

The MPEG RVC standard main aim is “to offer a more
flexible use and faster path to innovation of MPEG
standards in a way that is competitive in the current
dynamic environment” [1]. This is meant to give MPEG
standards an edge over its market competitors by substan-
tially reducing the Time to Market (TTM). The RVC
initiative exploits the reuse of obvious commonalties
among different MPEG standards and their possible
extensions using appropriate higher level formalisms. Thus
the objective of the RVC standard is to describe current and
future codecs in a way that makes such commonalities
explicit, reducing the implementation burden for device
vendors [2]. In order to achieve this objective, RVC
suggests simplifying the specification of new coding tools
by reusing components of previous standards instead of
defining new ones.

Figure 1 [3] defines the essential elements of the RVC
framework. It consists of three major components: a
normative Video Tool Library (VTL), a normative descrip-
tion of the connections between the coding tools (i.e.
Functional Units or FUs), namely Functional unit Descrip-
tion (FND), which is written in the Functional unit Network
Language (RVC-FNL), and a normative description of the
structure of the bitstream, namely Bitstream Syntax
Description (BSD), which is written in the Bitstream
Syntax Description Language (RVC-BSDL) [1].

H. Aman-Allah :K. Maarouf (*) : E. Hanna : I. Amer :
M. Mattavelli
Laboratory of Microelectronic Systems (GR-LSM), EPFL,
CH-1015 Lausanne, Switzerland
e-mail: karim.maarouf@epfl.ch

H. Aman-Allah
e-mail: hussein.aman-allah@epfl.ch

E. Hanna
e-mail: ehab.hanna@epfl.ch

I. Amer
e-mail: ihab.amer@epfl.ch

M. Mattavelli
e-mail: marco.mattavelli@epfl.ch

J Sign Process Syst (2011) 63:227–239
DOI 10.1007/s11265-009-0396-6

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/159154397?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The VTL is specified with a textual normative specifi-
cation and a corresponding reference SW. The SW
specification is implemented in RVC-CAL, which is
standardized by ISO/IEC MPEG and differs from the
original CAL specification by limiting a set of data types
and operators. This enables the existence of more efficient
CAL2SW and CAL2HW tools.

CAL is a dataflow oriented language, specified in 2003 at
the University of California at Berkley. It is a textual
programming language that defines the functionality of
dataflow components referred to as actors. Each actor is a
modular component with a state. Only the actor itself is
allowed to modify its state and the interaction between
different actors takes place through FIFO channels connect-
ing the output ports of one actor to the input ports of another.
Data is exchanged between actors in the form of tokens [4].
Hence, CAL exhibits strong abstraction and encapsulation
properties that allow for the definition of the FUs so that they
can be interchangeably combined and connected to form
different video codecs. CAL also facilitates concurrent
development because the maintainability and understand-
ability of the code are improved over other sequential models
implemented, for example, in C/C++.

Actors within a CAL program execute in sequences of
transitions. During each of these, an actor may consume an
input token, modify its internal state or produce an output
token. Every actor is described in a set of actions. Each
action defines a set of transitions to be performed under
certain conditions depending on the availability of input
tokens, their values, the internal state of the actor and the
priority corresponding to that action. CAL supports several
language constructs that describe actions firing process,
including action guards, finite state machines and action
priorities [4].

RVC-CAL, which is a subset of CAL, avoids the
concerns that arise with other languages due to the ever-
changing coding styles. It only provides natural constructs
that have been identified by the RVC framework as
essential elements for building MPEG codecs [4]. It also
abstracts the majority of the algorithm-irrelevant details
(like the clock synchronization, handshaking protocols, etc)
allowing the developers to better focus on the implemen-

tation and refinement of the algorithm in consideration,
which leads to results of much higher degrees of produc-
tivity and efficiency as objectively quantified in Section 5.

1.2 H.264/AVC Baseline Profile

H.264/AVC standard specifies different profiles, baseline,
main, extended and a range of high profiles, in addition to
the scalable profiles. Each profile specifies a particular set
of components. The baseline targets the broader band of
applications, including video conferencing, wireless video,
etc [5]. It supports inter and intra frame coding and entropy
coding with Context Adaptive Variable Length Coding
(CAVLC). Figure 2 provides an overview of a baseline
H.264/AVC encoder showing the different modules: inter
frame prediction (Motion Estimation and Motion Compen-
sation), intra frame prediction, a deblocking filter, forward
and inverse transforms (T and T−1), forward and inverse
quantization (Q and Q−1) and entropy coding.

1.3 RVC Encoding Tools

In this paper, an RVC-CAL implementation (targeting
hardware) of an H.264/AVC baseline profile encoder is
presented. The purpose is to verify the suitability of RVC-
CAL (together with the RVC supporting technologies) to
describe (and implement) such complex video coding
systems (e.g. H.264/AVC encoder). In addition, the pre-

Entropy
T Q

Entropy-
Current
Frame

ME

Reference MC
Frame

Intra
Prediction

CurrentCurrent
Frame Deblocking T-1 Q-1+Frame

Filter
T Q+

(reconstructed)

Inter Prediction
Coding

Figure 2 H.264/AVC baseline profile encoder block diagram.

RVC Decoding EngineRVC Encoding Engine

Original
Video Sequence

Reconstructed
Video Sequence

RVC Encoder RVC Decoder
Coded Bitstream

01100101…

ConfigurationConfiguration
FUs + Interconnections

VTL
(FND)

VTL
(normative)(informative)

Configuration Parameters
(BSD)

Figure 1 MPEGRVC encoding/
decoding scenario.

228 J Sign Process Syst (2011) 63:227–239

sented design modules can be used as building blocks to
demonstrate that the existence of RVC encoding tools
supports the evolution of the RVC standard. Many benefits
can be achieved by supporting the RVC framework with
such encoding tools. This includes (but is not limited to):

& Instead of modifying the available C/C++ software
reference model of a specific MPEG standard to make it
able to generate the BSDL bitstream and the FNL
decoder description in order to test the conformance of
a corresponding RVC decoder, building an RVC
encoder using RVC-CAL is more convenient. Especial-
ly due to the dynamic nature of the emerging RVC
standard that requires high degree of flexibility in
bitstream generation.

& Building the encoder using RVC-CAL enables the
usage of the commonalities between many components
within various MPEG standards. Hence, the existence
of an informative VTL for encoders may be advisable.

& This allows for the construction of “configurable
encoders” using the encoder’s informative VTL, which
specifies the set of functional units (FUs) that may be
interchangeably combined and connected to form
different video encoders, with various compression
performances and implementation complexities. Such
feature is highly demanded in many state-of-the-art
broadcasting facilities, such as those that rely on
simulcast and/or Scalable Video Coding (SVC).

& Some of the FUs of the normative VTL of the RVC
decoder can be used to construct the encoder, either
directly (such as the idct module), or indirectly, by
inferring the IO structure of a module in the encoder
from the corresponding module in the decoder.

Many components of the designed encoder represent
potential contributors to the RVC VTL. The paper previews
the design of the major components comprising the encoder
and compares the development effort and productivity
against other software and hardware approaches.

The remainder of this paper is organized as follows:
Sections 2, 3 and 4 discuss inter, intra frame prediction, and
entropy coding respectively with emphasis on the RVC-
CAL design and implementation. Analysis of the proposed
approach and comparison of results against other develop-
ment approaches is provided in Section 5. Finally, Section 6
concludes the paper.

2 Inter Prediction

2.1 Motion Estimation

H.264/AVC uses block based motion estimation (ME)
combined with transform coding for compressing video.

By using block based ME the motion occurring between
the frames can be estimated, thus eliminating the
temporal redundancy between frames which allows for
high compression [6].

A dataflow implementation of the ME/MC using
RVC-CAL actor language is introduced. Full search is
chosen to be the search algorithm in this case study as it
exploits the parallel nature of hardware and the metric of
comparison is the sum of absolute differences (SAD).
The abstract RVC-CAL implementation presented allows
for re-configurability and interchangeability by adding
other search algorithms and metrics as well as other tools
of the H.264/AVC such as sub-pixel ME. Figure 3 [3]
describes the ME RVC-CAL network consisting of 14
interacting actors.

The Frame Input Switch actor reads the frames of a raw
video sequence byte-wise and makes them available in the
form of tokens. Each token is consumed and stored in a
frame memory corresponding to the frame to which the
token belongs. The Current Frame Memory and the
Reference Frame Memory represent the two frame memo-
ries. Once both memories have been fully loaded the
module begins the ME process. Two Memory Controllers
control both memories by passing the proper addresses to
extract the pixels of a macroblock (MB) from a frame
memory.

The Macroblock Raster Scanner reads all MBs in the
current frame in a raster fashion, and then produces two
tokens representing the starting x and y positions of the
first MB. The Current Frame Memory controller con-
sumes the x and y tokens and produces address tokens
corresponding to the pixels of that MB from the current
frame memory.

The Search Algorithm Module consumes the same x and
y tokens containing the location of the original MB. The
actor consumes the tokens, calculates a search window
around that location, chooses candidate MBs and passes
their locations to the Reference Frame Memory Controller.
In this case all candidate MBs in the search window are
chosen since the full search algorithm is in use.

When both Memory Controllers consume the tokens, the
Current Frame Controller receives the location of the
original MB, and the reference frame controller receives
the locations of the candidate blocks. The implementation
does not define any form of synchronization as it is handled
autonomously during synthesis to hardware description
language (HDL). Both controllers instruct the memories to
output the pixels of the MBs. The current frame memory
passes the pixels of the original block to the Current MB
Register. Since the original block is used in all compar-
isons; it is stored in a register in order to reduce memory
accesses. The Reference Frame Memory produces pixel
tokens of the candidate blocks directly to the SAD actor,

J Sign Process Syst (2011) 63:227–239 229

which performs the SAD operation. The SAD consumes the
pixel tokens from the reference frame memory and the
Current MB Register and calculates the score. The score is
then passed to the Comparator which chooses the best
score.

Once all candidate MBs have been compared with the
original block the Comparator outputs the location of the
best scoring block to the Motion Vector Calculator; which
calculates the motion vector for the original MB by
subtracting the best score’s location from the original
block’s location. The best score and the motion vector
tokens are then output to the Motion Compensation Module
which uses the motion vectors along with pixels from the
Reference Frame Memory in constructing the compensated
frame and finally to calculate the compensation error. The
previous process is repeated until all blocks in the current
frame have been matched.

2.2 Motion Compensation

Motion compensation (MC) is the process where the
current frame is reconstructed from the previous frame.
This is done by using pixels of the reference frame from
locations specified by the motion vectors obtained in the
ME process. The result is a motion compensated frame
which is a prediction of the motion that occurred between
the reference and the current frame.

In Fig. 3, the three actors: Address Mux, Data Switch and
Current MB Register 2 are used by the MC module. The
Address Mux takes as input external addresses supplied by

the MC module and internal addresses supplied by the
Reference Frame Memory Controller and their enable
signals. The external addresses represent the pixels of a
MB that are to be used in constructing the compensated
frame. The function of the Address Mux is to pass the
addresses to the memory and to control the Data Switch
actor via the Line select signal. The Data Switch outputs
Data from the Reference Frame Memory to either the SAD
actor or to the MC module based on its line select input.
The Current MB Register 2 only fires when a best match is
selected, the current MB is needed in calculating the
compensation error at the MC module.

Figure 4 [3] shows the structure of the MC module. The
module contains three actors that are in the ME module
along with four new ones. An external controller initializes
the module by producing a CLR token to the Macroblock
Raster Scanner which, in turn, produces two tokens, x and
y. Memory Controller 1 retrieves the MBs of the compen-
sated frame by consuming the x and y tokens after the
Adder compensates them with the motion vector. Concur-
rently, Memory Controller 2 specifies where to write in the
memory. Memory Controller1 produces the address tokens
that are consumed at the ME module by the Address Mux
which as a result extracts and returns the compensated MB
pixels to the MC module.

The Receiver actor consumes the compensated MB
pixels and produces increment (INCR) tokens to the
Macroblock Raster Scanner to fetch the next MB. It then
relays the pixels to be stored in the Compensated Frame
Memory, and to the Subtractor. The Subtractor stores the

In Flip

Frame Input Switch Read Enable 2
Address 2

Data In Data In

Memory
Address

Memory Address

Current Frame Reference Frame Address Data Out
Memory

Current MB
Memory MUXRegistry

Memory Line SelectPixels

SAD
Data SwitchRead Enable Address Line 1

Read Enable 1ScoreMemory Controller

Address 1Best Match Memory ControllerComparator
Coordinates

Candidate Coordinates# Comparisons

MB Coordinates
MV

Search AlgorithmCalculator
ModuleMB Raster Scanner

INCR
Coordinates

Line 2CLR

Current MBMinimum Score Data Out
Registry 2Pixels

Figure 3 Motion estimation
RVC-CAL network.

230 J Sign Process Syst (2011) 63:227–239

difference between compensated MB pixels and the current
MB pixels in the Compensation Error Memory. After both
Memories are fully loaded, another CLR token is sent to the
Macroblock Raster Scanner to start reading data from the
memories. The CLR token also flips the R/W Switch actors
from write to read.

Figure 5 shows the interaction between the ME and MC
networks. After the compensated frame is constructed and
the compensation error is calculated, the compensation
error pixels are sent to the transform coding module for
discrete cosine transform (DCT), quantization and rescal-
ing. The current frame is reconstructed by adding both
compensated frame and error after quantization and rescal-
ing. It is then passed back to the ME module as the
reference frame and a new frame is read from the video
sequence as the new current frame.

3 Intra Prediction

During intra prediction, a predictor P is formed from
previously encoded MBs. In H.264/AVC luma prediction, P
can be formed either for every 4×4 block in a MB (16 in
total) or for the 16×16 MB as a whole. There are nine

prediction modes for 4×4 and four for 16×16 block sizes.
The encoder selects the mode which minimizes the
difference between P and the original block to be encoded
[5]. Figure 6 shows a 4×4 luma block in which ‘A-M’
represent the previously encoded samples and ‘a-p’ repre-
sent the values to be predicted.

Figure 7a shows how the predictors ‘a-p’ are calculated
from the samples ‘A-M’ in each of the nine modes and
Fig. 7b shows how the entire 16×16 block is predicted in a
single operation in each of the four modes.

4×4 Modes 0. A, B, C & D are extrapolated vertically.
1. I, J, K & L are extrapolated horizontally.
2. DC Mode: One value is used for all predictors,

which is the mean value of A, B, C, D, I, J, K, L.
3–8. Predictor value is a weighted average of the samples

depending on the direction of the arrows following
the pattern: W þ X þ Y þ Z þ Round Valueð Þ >>

Shift Value

16×16 Modes 0–2. The predictors are generated similar
to the 4×4 modes.

3. Plane Mode: A linear function is fitted to the
horizontal and vertical samples.

Let p[0,0] & p[15,15]be the top left and bottom right
positions in the MB respectively.

pred y; x½ � ¼ Clip aþ b x� 7ð Þ þ c y� 7ð Þð Þ >> 5ð Þ
a ¼ 16 p �1; 15½ � þ p 15;�1½ �ð Þ
b ¼ 5H þ 32ð Þ >> 6

c ¼ 5V þ 32ð Þ >> 6

H ¼
X7

x0¼0

x0 þ 1ð Þ p �1; 8þ x0½ � � p �1; 6� x0½ �ð Þ

V ¼
X7

y0¼0

y0 þ 1ð Þ p 8þ y0;�1½ � � p 6� y0;�1½ �ð Þ

In order to implement an intra prediction module in
RVC-CAL which generates predictors for all the modes, a
reconfigurable processing element (PE) is used based on
the architecture in [7]. Using reconfigurable PEs achieves
better area usage than using a PE for each mode. A four-
parallel architecture is used, meaning that there are four PEs
that generate four predicted pixels in a single prediction
iteration. A PE operates in a certain way depending on the
prediction mode.

Video Sequence

AdderInput

Motion
vectors

Motion MotionReference MB
Estimator Compensatorcoordinates

Compensation
Reference MB Error

pixels

Reconstructed
Error

Compensated
Frame Pixels

Figure 5 ME and MC networks interaction.

Start CLR

Incremental
Control

INCR

Adder

Memory Controller Memory Controller
1 2Compensated MB

Addresses

R/WCompensated MB Receiver SwitchPixels

Subtractor
Pixels

Motion Vector

MB
Raster Scanner

Read Enable

Compensated Frame
Memory

Compensation Error
Memory

R/W
Switch

Current MB

Figure 4 Motion compensation RVC-CAL network.

Figure 6 4×4 Luma block.

J Sign Process Syst (2011) 63:227–239 231

The module consists of a single controller and four
identical series of adders, registers and shifters, each
representing one of the four PEs. Figure 8 shows the
RVC-CAL network of the Intra prediction engine that
corresponds to the architecture in [7].

The main actor in the network is the PE Controller,
which determines which values to output to the adders or to
the bypass line, depending on the current mode and the
position of the sample being predicted. The Adders add the
samples selected for use in prediction. The Direction directs
the output either to the Round Shift Clip actor or back to the
PE Controller (in case addition results need to be
accumulated over different prediction iterations). The
Round Shift Clip actor rounds and shifts the input value
and then clips it to be between 0 and 255. The Bypass actor
outputs the predictor value either from the bypass line or
the Round Shift Clip actor.

The operation of the intra prediction module begins with
the PE Controller actor receiving the previously encoded
samples ‘A-M’ serially at its input port for the current 4×4

block. The predictors for the nine 4×4 modes are then
generated for the current block. In mode 0 and 1, the PE
Controller passes a token with the appropriate value via the
bypass line to the Bypass actor, which produces the token
with the predictor value. In mode 2, the PE Controller
produces tokens with the values to be added in the first
prediction iteration at PE1 (A, B, C and D) and PE2 (I, J, K
and L). The values are added and the Direction actors are
signaled by the direction control line to accumulate the
result of the additions. In the next prediction iteration, the
PE Controller outputs the accumulated values received at
the D input ports to the Adders. The final added result is
shifted by 3 by the Round Shift Clip actor to obtain the
mean value and then output at PE0. In modes 3–8, the PE
Controller produces tokens depending on the position of
the sample being predicted and the mode to the adders. It
also produces tokens for the round and shift values to the
Round Shift Clip actors. After the tokens are added the
results are forwarded by the Direction actors to the Round
Shift Clip actors and the results are output as the predicted

0 Vertical 1Horizontal 2 DC

M A B C D E F G H M A B C D E F G H M A B C D E F G H

I

J

I

J

I

JJ

K

J

K

J

K
Mean A,B,C,D
I,J,K,LK

L

K

L

K

L

I,J,K,L

3 Diagonal Down Left 4 Diagonal Down Right 5 Vertical Right

M A B C D E F G H M A B C D E F G H M A B C D E F G H

g g g g

I

J

I

J

I

JJ

K

J

K

J

KK

L

K

L

K

L

6 Horizontal Down 7 Vertical Left 8 Horizontal Up

M A B C D E F G H M A B C D E F G H M A B C D E F G H

p

I

J

I

J

I

JJ

K

J

K

J

KK

L

K

L

K

L

0 Vertical 1 Horizontal

Top Top

L
ef

t

L
ef

t

2 DC 3 Plane

Top Top

Mean Top, LeftL
ef

t

L
ef

t

Figure 7 a 4×4 modes b 16×16 modes.

In

PE Controller
Out0 1 2 3 Out0 1 2 3 Out0 1 2 3 Out0 1 2 3Din1Din0 Din2 Din3

PE0 PE1 PE2 PE3

Adder Adder Adder Adder

DirectionDirection D
 R

eg
is

te
r

C
on

tr
ol

D
 R

eg
is

te
r

C
on

tr
ol

D
 R

eg
is

te
r

C
on

tr
ol

D
 R

eg
is

te
r

C
on

tr
ol

Direction Direction

R
ou

nd
 &

 S
hi

ft
 V

al
ue

s

R
ou

nd
 &

 S
hi

ft
 V

al
ue

s

R
ou

nd
 &

 S
hi

ft
 V

al
ue

s

R
ou

nd
 &

 S
hi

ft
 V

al
ue

s

Round Round Round Round
Shift Clip Shift Clip Shift Clip Shift Clip

B
yp

as
s

V
al

ue

B
yp

as
s

V
al

ue

B
yp

as
s

V
al

ue

B
yp

as
s

V
al

ue

Bypass Bypass Bypass Bypass

Pred 0 Pred 1 Pred 2 Pred 3

Figure 8 Intra predictionmodule
RVC-CAL network.

232 J Sign Process Syst (2011) 63:227–239

values by the Bypass Multiplexers. This process is repeated
for each of the 16 4×4 blocks in a single MB.

The next step is to produce the predictors for the four
16×16 modes. Mode 0 and1 are similar to those in the
4×4 block size. In mode 2, for the first 3 prediction
iterations the following samples are added at each PE
(Top and left samples are referred to as T0-T15 and L0-
L15 respectively):

PE0 : T0þ T4þ T8þ T12ð Þ þ L0þ L4þ L8ð Þ þ L12ð Þ
PE1 : T1þ T5þ T9þ T13ð Þ þ L1þ L5þ L9ð Þ þ L13ð Þ
PE2 : T2þ T6þ T10þ T14ð Þ þ L2þ L6þ L10ð Þ þ L14ð Þ
PE3 : T3þ T7þ T11þ T15ð Þ þ L3þ L7þ L11ð Þ þ L15ð Þ
At the fourth prediction iteration, the result at each PE is
added at PE0 to produce the final DC value. In mode 3,
four seed values are first calculated, pred[0,0], pred[0,4],
pred[0,8] and pred[0,12].

pred 0; 0½ � ¼ A0ð Þ >> 5 pred 1; 0½ � ¼ A0þ cð Þ >> 5

pred 0; 1½ � ¼ A0þ bð Þ >> 5 pred 1; 1½ � ¼ A0þ bð Þ þ cð Þ >> 5

pred 0; 2½ � ¼ A0þ 2bð Þ >> 5 pred 1; 2½ � ¼ A0þ 2bð Þ þ cð Þ >> 5

pred 0; 3½ � ¼ A0þ 3bð Þ >> 5 pred 1; 3½ � ¼ A0þ 3bð Þ þ cð Þ >> 5

As shown in the equations, PEs are used to calculate pred
[0,1], pred[0,2] and pred[0,3] by adding b, 2b & 3b to pred
[0,0] respectively. The rest of the first row is calculated in a
similar fashion from the other seed values. To calculate the
predictors of the second row, the first row is added to c, and
so on for the rest of the rows.

The top samples are first received by the PE Controller
and stored in state variables. After that, the predictors are
generated for mode 0 similar to the 4×4 mode. The
additions of the first prediction iteration in mode 2 are also
performed since they need the top samples and the results
of the additions are stored in the Direction actors. Next, the
left samples are received by the PE Controller and stored in
state variables. The predictors for mode 1 are then
generated similar to the 4×4 mode. After mode 1 is
finished, the resulting additions in the first prediction
iteration of mode 2 are accumulated using the Direction
actors and the remaining iterations of additions are
performed, after which the final DC value is available at
PE0. The PE Controller then receives the seed values for
the plane mode and stores them in state variables. Finally,
the predictors for plane mode are calculated by adding b
to the seed values, in the first row and adding c to each row
to calculate the values for the next row, using the Direction
actors to accumulate the addition.

The PE Controller is the largest and most important actor
in the intra prediction module. It is responsible for making
the decision of which previously coded samples need to be
used to generate the current predictor. It is divided into
several actions, more or less one for each intra prediction

mode. For Example, the actions for modes 3–8 simply
produce the appropriate values to the adders depending on
the pixel position (determined by the row variable) and the
round and shift values. Since four predictors can be produced
per prediction iteration, one row of the 4×4 block is
predicted each iteration and the whole block takes four
iterations to be predicted. The sequence of flow from one
mode to the next, described previously, is determined by a
state machine. The execution processes and the organization
of the actions within the same actor are usually handled
using state machines that are very similar to (yet more
intuitive than) their counterparts in other HDLs.

4 Entropy Coding

The baseline profile of H.264/AVC uses two main schemes
to perform high data compression: Exp-Golomb coding and
Context Adaptive Variable Length Coding (CAVLC). On
the higher levels (frames, etc.), H.264/AVC encodes the
syntax elements using fixed or variable length codes. On
the lower levels as in the slices level or below (MBs,
blocks, etc.) the syntax elements are encoded using Variable
Length Codes (VLC) [8].

Exp-Golomb encodes all syntax elements except for the
quantized transform coefficients (residual data), which are
encoded using the CAVLC scheme. Thus, the same VLC
tables are used for almost all the syntax elements; which
contributes to reducing the memory requirements needed to
store such tables.

Exp-Golomb codes are variable length binary codes that
are constructed systematically with the following pattern:
Code ¼ Mzeros½ � 1½ � INFO½ �

The code words constructed in this fashion are guaran-
teed to have symmetric width; where the INFO field is
represented in M bits, making the width of the code word
equal to 2M þ 1.

Given a parameter k, the corresponding code_num is
then calculated according to one of four modes and the
mode selection decision is based on the parameter type.
Each of such modes is designed to produce shorter
codewords for frequently-occurring values and longer
codewords for less common parameter values. After the
code_num has been calculated, codewords can be con-
structed on the basis of the following equations.

M ¼ log2 Code Numþ 1ð Þb c INFO ¼ Code Numþ 1� 2M

Figure 9 [3] shows the Exp-Golomb module imple-
mented in RVC-CAL as a simple network with one input
port, which receives the parameter token to be encoded and
one output port which outputs the codeword serially. The
Exp-Golomb network provides interconnections among

J Sign Process Syst (2011) 63:227–239 233

nine different actors, out of which four (plus one, on which
more later) actors perform the tasks of the four different
mapping modes. The rest of the actors include a controller
responsible for the mapping mode decision based on the
parameter type, a code generator to construct the Exp-
Golomb codeword as described above, an assembler
responsible for the reordering, concatenation and outputting
of the codeword bits, and finally a utility actor that provides
decimal to binary conversion to represent the INFO bits.

For each of the four different mapping modes an
actor specifies how the mapping from the parameter to
the code_num is to be performed. The unsigned mapping
actor is a simple one, which outputs the code_num token
with a value equal to that of the input token. The signed
mapping actor defines two different actions depending on
the value of the input token; one in which the code num ¼
2 kj j for non-negative values and the other in which the
code num ¼ 2 kj j � 1 for negative values. The truncated
mapping actor also defines two different actions following
the unsigned mapping scheme for values greater than one
and inverting the binary value of the input token
otherwise. The mapped exponent relies on a lookup table
(LUT) specified in the ITI-recommendation based on
different prediction modes and chroma array types. Thus,
the mapped exponent actor is a bit more involved than the
other three. It acts as a controller communicating with a
dedicated actor storing the LUT (targeting a ROM
implementation upon synthesis). The communication

channel is interfaced with the corresponding address
(input) and data (output) ports. The LUT is organized in
a reordered manner, so that the coded_block_pattern is
used as an address for the table to read back the
corresponding code_num.

Implementing the Exp-Golomb module in RVC-CAL
provides a high degree of abstraction that allows for
seamless integration within other modules with minimal
effort. As opposed to other implementations provided in C
for example, no pre-knowledge of the user defined data
types or any other implementation-specific details are
needed. Integrating the Exp-Golomb module within the
larger entropy coding module is as easy as defining the
interconnections for its input and output ports; that adds
only two lines of code. Thus, the Exp-Golomb module and
the CAVLC module can be implemented by two completely
different developers and then the integration overhead
almost sums up to zero. Table 1 holds comparisons related
to development time and lines of code of the proposed
approach against traditional approaches.

The H.264/AVC recommendation [9] provides two
alternative entropy coding methods (both of which are
context-adaptive variable-length based), Context Adaptive
Variable Length Coding (CAVLC) and Context Adaptive
Binary Arithmetic Coding (CABAC). Context based
adaptivity improves the performance considerably relative
to prior standards. Since CABAC is not a part of the
baseline profile only CAVLC is considered hereby.

UEMapper SEMapper

Pa
ra

m
et

er
Pa

ra
m

et
er

Pa
ra

m
et

er

co
de

_n
um

co
de

_n
um

co
de

_n
um

co
de

_n
um

Prefix

Syntax
Mapping Controller

Exp-Golombcode_num
Assembler

Codeword

Element Code Generator Suffix

C
B

P

C
A

T
P-

M
od

e

Address
P-Mode

TEMapper MEMapper ME_MAPPINGCAT
code_num

Figure 9 Exponential golomb
RVC-CAL network.

Table 1 Comparison between RVC-CAL, C and VHDL approaches.

Lines of code (LOC) Development time (MH) Number of developers

Intera Intra Entropy Inter Intra Entropy Inter Intra Entropy

RVC-CAL 203 1239 922 56 80 72 1 1 1

C/C++ 356 2758 1,765 N/Ab 3 5 3

VHDL 897 N/Ab 3,784 133 N/Ab 116 1 N/Ab 1

a The comparison relates to integer pel inter prediction implementing full search and SAD
bNo precise data available at the time of comparison

234 J Sign Process Syst (2011) 63:227–239

CAVLC exploits the statistical properties of the quan-
tized 4×4 block with the coefficients to be encoded to
provide a compact and efficient lossless representation of
the data. It is also context adaptive in the sense that
different VLC tables are used for the different syntax
elements and are switched according to the values of
previously coded elements [8]. Entropy coding perfor-
mance is improved in comparison to other single-table
based schemes because the different VLC tables are
designed to accommodate the specific statistics of each
syntax element.

Figure 10 [3] describes the proposed RVC-CAL imple-
mentation of the CAVLC algorithm (thoroughly described
in [5]). It starts with the Zigzag Scanner actor performing
the pre-processing on the block of coefficients and making
the reordered block available for both the Counter and the
Reverser. The Counter prepares the meta-data needed
throughout the algorithm execution; namely the Total-
Coeffs, TrailingOnes and the total_zeors. The N Calculator
calculates the number of non-zero coefficients based on the
corresponding values of the neighboring blocks. The
CoeffTokenEncoder uses the TotalCoeffs and TrailingOnes
to access one of the LUT to retrieve the corresponding
codeword. The choice of the LUT to be accessed is made
by the conjunction of the N-Calculator and the Table
Selector actors. The algorithm execution proceeds in a
distributed fashion among the other actors and follows
naturally as illustrated in Fig. 10.

The algorithm doesn’t execute according to its intuitive
order but rather depending on the tokens available at each
point in time during execution and that adds yet another
advantage to the RVC-CAL implementation. The different
actors in Fig. 10 execute in independently and it is then the
responsibility of the assembler to compile the output tokens
from the different actors, reorder them and output the
encoded stream serially.

H.264/AVC CAVLC encoding relies heavily on the
usage of LUTs (Fig. 10 shows the sub-modules in which
lookup is involved having a thicker border), something
which provides significant improvement of efficiency but
with the price of complication of the fabrication process
and additional consumption of area. The proposed CAVLC
module introduces a memory model which preserves the
complete LUTs nevertheless still sparing up to 31.5% of the
area required to store them.

Figure 11 shows the proposed memory model which is
represented in RVC-CAL as an actor representing the
memory controller, another representing the memory itself
and a third with the valid bit widths (VBW) of the
corresponding entries of the second actor. This approach
exploits an efficient storage technique for the run of zeros
to the left of the codeword. For example the codeword
00000000001 is stored as only 001 in the memory with an
11 in the corresponding location in the VBW memory. In
this example, only seven bits are to be stored instead of 11.
With almost 475 different variable length code words to be
stored [9], such reduction multiplies and offers approxi-
mately 21% reduction in the ROM usage. It is then the
responsibility of the controller to align the codeword before

Nu

N-Calculator
Table

Selector

N CoeffTokenTi Code1

NL Encoder

ZigZag
TotalCoeffs

Luma Counter
TrailingOnes

4x4 block
Scanner total_zeros

CodeTotalZeros 4

Encoder

Assembler
Bitstream

re
or

de
re

d
bl

oc
k

ZerosRun ZerosRun Code5
001011…

Counter Encoder

Reverser

Code2
Sign

EncoderR
s

RT1s

Level
Code3

Splitter
EncoderRTCs

Figure 10 CAVLC RVC-CAL
network.

……..

Parameters

ROM Controller

A
dd

re
ss

C
od

ew
or

d

ROM VBW ROM

V
B

W

A
dd

re
ss

Se
ri

al
 c

od
ew

or
d

Figure 11 CAVLCLUTmemory
model.

J Sign Process Syst (2011) 63:227–239 235

outputting it, a task which requires minimal computational
interference.

5 Results and Analysis

The modules described in this paper are the main modules
that were integrated along with others to form an AVC
baseline encoder. Figure 12 shows the subjective results of
reconstructing a frame, encoded using different Quantiza-
tion Parameters (QP).

The feasibility of choosing RVC-CAL as the implemen-
tation language is reflected on the results of comparing the
encoded versus the reconstructed frame. Figure 13 shows
the Peak Signal to Noise Ratio (PSNR) of the reconstructed
frame measured at different QPs.

One of the major RVC advantages is that it accom-
panies its normative description language (RVC-CAL)

with many supporting tools that enable automatic code
generation into software (CAL2C) and hardware
(CAL2HDL) [10]. Table 1 presents a comparison between
the proposed RVC-CAL implementation, the H.264/AVC
JM reference software written in C [11] and a reference
VHDL implementation.

Table 1 [3] shows the lines of code, development time
and number of developers required for the RVC-CAL, C
and VHDL implementations correspondingly. The numbers
show that the RVC-CAL implementation needs less time to
be developed and hence requires fewer developers. This
gives the RVC-CAL implementation an advantage of
reducing the development costs, while at the same time
minimizing the TTM.

Figure 14 shows the average productivity gain (calcu-
lated as the average saving in LOC) and the development
speedup achieved from using the proposed RVC-CAL
approach. Both metrics are normalized with respect to the

Original Frame QP=1 QP=12

QP=23 QP=32 QP=40

Figure 12 The first reconstructed
P-frame of Akyio QCIF.

Figure 13 PSNR at different QPs. Figure 14 The gain from using the RVC-CAL implementation.

236 J Sign Process Syst (2011) 63:227–239

VHDL implementation to focus on the improvement factor.
The proposed RVC-CAL implementation for the encoder is
four times more productive than the corresponding VHDL
implementation, although it required only half the time. On
the other side, RVC-CAL is also twice as productive as the
C/C++ implementation. Enhancements to RVC-CAL cur-
rently taking place propose embedding built-in functions
that are expected to increase the RVC-CAL productivity up
to the double.

The results achieved are attributed to a number of factors
referring to the strong abstraction and encapsulation
properties exhibited by CAL. Such properties allow the
developers to focus on one module at a time, without
worrying about the order of execution, the synchronization
between the different modules or any other process-
irrelevant details.

On the other hand, the results are echoed on the
hardware implementation level. The HDL model is
generated from the presented CAL model using the
CAL2HDL tool. The HDL code is synthesized using
Xilinx ISE targeting the Xilinx Virtex 5 XC5VLX50T
FPGA. The synthesis results of the CAVLC module are
provided as an example for the quality of the hardware
implementation. Table 2 summarizes the performance of
the CAVLC module and compares it against [8] and [12–
15].

The synthesis results show that the proposed implemen-
tation exceeds the throughput of the others with a factor of
2.58 in the worst case, with the exception of [12] because
that implementation employs hardware redundancy to
exploit parallelism and consumes 758 times more hardware
resources. Besides the advancements in FPGA manufactur-
ing technology, the results can be attributed to several
factors. The abstract and encapsulated implementation
facilitated by RVC-CAL allows for optimization of every
sub-module (actor) on its own, which collaborates to
deliver overall optimization of the whole CAVLC module.
In addition, the optimizations performed by the

CAL2HDL tool during the HDL code generation (ex-
plicitly specified in [16]) also contribute greatly to the
quality of the synthesis results.

6 Conclusion

In this paper, an RVC-CAL implementation of the
major FUs constituting an H.264/AVC baseline profile
encoder has been featured. Throughout the different
sections, a brief overview of the RVC-CAL approach
along with the associated networks has been presented
for each of the inter, intra frame predictors, and the
entropy coder. The components presented are part of an
RVC encoding tools library, due to the abstract and
encapsulated representation that was made feasible by
RVC-CAL.

The results illustrate the advantages of using RVC-
CAL as a specification language for the RVC standard.
RVC-CAL implementation can target both software and
hardware architectures; unlike the reference software
written in C (sequential programming language) or
VHDL (hardware description language). Development
in RVC-CAL needs less time and the code produced by
the generators is more efficient than the corresponding
code in C or VHDL. The results in Table 1 are also
reflected in [16] where an MPEG-4 simple profile decoder
was developed using RVC-CAL and compared to a VHDL
implementation. Not only was the RVC-CAL development
time four times faster, but it was also more efficient in terms of
execution time. This was attributed mainly to the advantages
of using dataflow programming instead of register transfer
level (RTL) design. Furthermore, the faster RVC-CAL
implementation time allowed for more design optimization
cycles. It is generally considered that using a lower level
language such as VHDL for hardware implementation would
produce better results than a higher level language implemen-
tation such as RVC-CAL due to the ability to control more
implementation details. However, using RVC-CAL allows for
faster design cycles, thus providing regular feedback to
designers and enabling them to optimize the design faster
and more frequently.

RVC-CAL allows developers to focus on functional
issues thus leaving the timing details to the code
generators which also perform optimizations to adjust
the clock rate [16]. The code generators also handle the
handshaking signals required to simulate the connections
between the actors and networks so the simplicity of using
tokens for communication in the CAL specification does
not suffer from any overhead when translating to hardware
description language. This stems from the properties of
dataflow programming. Dataflow programs are naturally
concurrent [16] and they are easily reused and reconfig-

Table 2 Performance of the CAVLC module compared to other
implementations.

Critical
path (ns)

CLK
frequency
(MHz)

Number
of LUT

Throughput
(MSamples/s)

Proposed
implementation

3.729 268.1 112 268

[8] 9.6 103.8 2,467 103.8

[12] 31.326 31.9 84,902 510.4

[13] 3.1 210 N/Aa 100

[14] 8 125 N/Aa 74.04

[15] 13.15 76 3,946 6.75

a No precise data available at the time of comparison.

J Sign Process Syst (2011) 63:227–239 237

ured, which is an important aspect of the RVC framework.
Furthermore, simulating parallelism is another advantage
to using data flow programming over sequential program-
ming that makes development faster [17]. In C, parallelism
must be explicitly defined, which is often difficult and
adds significant overhead. This also hides the original
structure of the program among the code required to
handle threads and platform specifics. However, in CAL
parallelism is implicit; actions are fired and produce and
consume tokens whenever the firing conditions are
satisfied. Normally, developers need not pay attention to
the order of action execution.

References

1. Jang, E. S., Ohm, J., Mattavelli, M. (January 2008). Whitepaper
on Reconfigurable Video Coding (RVC). ISO/IEC JTC1/SC29/
WG11 document N9586.

2. Lucarz, C., Mattavelli, M., Thomas-Kerr, J., Janneck, J. (2007).
Reconfigurable media coding: A new specification model for
multimedia coders. Workshop on Signal Processing Systems.

3. Aman-Allah, H., Hanna, E., Maarouf, K., Amer, I. (2009).
Towards a comprehensive RVC VTL: A CAL description of an
efficient avc baseline encoder. IEEE International Conference on
Image Processing (ICIP 2009).

4. Mattavelli, M. (2008). Reconfigurable Video Coding (RVC) a
new specification and implementation paradigm for MPEG
codecs. The 12th Annual IEEE International Symposium on
Consumer Electronics. [Keynote Presentation].

5. Richardson, I. E. G. (2003). H. 264 and MPEG-4 video
compression. Aberdeen: Wiley.

6. Yang, W. (2003). An efficient motion estimation method for
MPEG-4 video encoder. IEEE Transactions on Consumer
Electronics, 49(2), 441–446.

7. Huang, Y., Hsieh, B., Tung-Chien, C., & Chen, L. (2005).
Analysis, fast algorithm, and VLSI architecture design for H.
264/AVC intra frame coder. IEE Transactions on Circuits and
systems for Video Technology, 15(3), 378–401.

8. Silva, T., Vortmann, J., Agostini, L., Bampi, S., Susin, A. (2007).
FPGA based design of CAVLC and exp-golomb coders for H.264/
AVC baseline entropy coding. 3rd Southern Conference on
Programmable Logic (SPL07).

9. International Telecommunication Union. (2005). Draft ITU-T
recommendation and final draft international standard of joint
video specification (ITU-T Recommendation H.264 (03/05);
Advanced Video Coding for Generic Audiovisual Services).

10. Lucarz, C., Mattavelli, M., Wipliez, M., Roquier, G., Raulet, M.,
Janneck, J., et al. (2008). Dataflow/Actor-oriented language for
the design of complex signal processing systems. Conference on
Design and Architectures for Signal and Image Processing
(DASIP 2008).

11. Joint Video Team (JVT) reference software, version 14.2. [Online]
http://iphome.hhi.de/suehring/tml/download/old_jm/jm14.2.zip.

12. Amer, I., Badawy, W., Jullien, G. (2004). Towards MPEG-4 part
10 system on chip: A VLSI prototype for context based adaptive
variable length coding (CAVLC). IEEE Workshop on Signal
Processing Systems, pp. 275–279.

13. Yi, Y., Cheol Song, B. (2008) A novel CAVLC architecture for
H.264 video encoding at high bit-rate. IEEE International
Symposium on Circuits and Systems (ISCAS 2008).

14. Chien, C., Lu, K., Shih, Y., Guo, J. (2006). A high performance
CAVLC encoder design for MPEG-4 AVC/H.264 video coding
applications. IEEE International Symposium on Circuits and
Systems, pp. 3838–3841. (ISCAS 2006).

15. Sahin, E., Hamzaoglu, I. (2005). A high performance and low
power hardware architecture for H.264 CAVLC algorithm. 13th
European Signal Processing Conference. (EUSIPCO 2005).

16. Janneck, J., Miller, I. D., Parlour, D. B., Roquier, G., Wipliez, M.,
Raulet, M. (2008). Synthesizing hardware from dataflow pro-
grams: An MPEG-4 simple profile decoder case study. IEEE
Workshop on Signal Processing Systems (SiPS 2008).

17. Bhattacharyya, S., Brebner, G., Janneck, J., Eker, J., von Platen,
C., Mattavelli, M., et al. (2008). OpenDF—A dataflow toolset for
reconfigurable hardware and multicore systems. First Swedish
Workshop on Multi-Core Computing.

Hussein Aman-Allah was born in Cairo, Egypt, in 1987. He received
his B.Sc. and M.Sc. Degrees in Media Engineering and Technology
from the German University in Cairo in. He has been working on
Reconfigurable Video Coding during his stay at the laboratory of
Microelectronic Systems (GR-LSM) of the Ecole Polytechnique
Federale de Lausanne (EPFL). His research interests include Recon-
figurable Video Coding, Dataflow and Declarative modeling.

Karim Maarouf was born in Cairo, Egypt. He received his B.Sc. and
M.Sc. degrees in Computer Science and Engineering from the German
University in Cairo in 2008 and 2009, respectively. He joined the
Laboratory of Microelectronic Systems (GR-LSM) at the Ecole
Polytechnique Federale de Lausanne (EPFL) as a visiting research
assistant where he worked on reconfigurable video coding. He is
currently a teaching assistant at the German University in Cairo. His
research interests include reconfigurable video coding and software
engineering.

238 J Sign Process Syst (2011) 63:227–239

http://iphome.hhi.de/suehring/tml/download/old_jm/jm14.2.zip

Ehab Hanna born in December 1984, studied at the German
University in Cairo. After receiving his B.Sc. in digital media in
2008, he proceeded to work as a research assistant at the Ecole
Polytechnique Federale de Lausanne, where he participated in
developing a video encoder for the RVC workgroup. He is currently
working as a teaching assistant at the GUC after receiving an M.Scs in
digital media. His research interests include video coding, database &
web development and network applications.

Ihab Amer (Ph.D. 07, M.Sc. 03, and B.Sc. 00) received his Ph.D.
degree from the University of Calgary (U of C). In 2006, he joined the
German University in Cairo (GUC) as an Assistant Professor. Dr.
Amer spent a 6-months visiting period at the DSP division of Xilinx
Inc., and he has been a member of the ISO/IEC MPEG Standard

Marco Mattavelli started his research activity at the “Philips
Research Laboratories” of Eindhoven in 1988 on channel and source
coding for optical recording, electronic photography and signal
processing of HDTV. In 1991 he joined the “Swiss Federal Institute
of Technology” (EPFL) where he got his PhD in 1996. He has been a
chairman of a sub group of MPEG ISO/IEC standardization
committee. For his work he received the ISO/IEC Award in 1997
and 2003. He is currently leading the “Multimedia Architectures
Research Group” at EPFL. His current major research activities
include methodologies for specification and modeling of complex
systems, architectures for video coding, high speed image acquisition
and video processing systems, applications of combinatorial optimi-
zation to signal processing. He is the author of more than 100
publications and has served as invited editor for several conferences
and scientific journals.

Committee and the CAC for the SCC (Subcommittees 6 and 29). He
has participated in the organization of several academic and
professional events such as the 20th meeting of ISO/IEC JTC 1,
IWSOC, and ICMENS. He served as the local co-chair of IWSOC’06,
and ICMENS’06, and he is the chair of the ICIP’09 Special Session
on RVC. Dr. Amer is a holder of several prestigious awards and highly
competitive scholarships. He authored/coauthored over 30 peer-
reviewed conference and journal papers, and he has over 30
contributions to the MPEG standards. He (with Xilinx, Inc.) also has
a pending patent. He currently works as an overseas research
consultant with ATIPS Labs at the U of C. He has recently joined
the GR-LSM lab at EPFL as a visiting researcher.

J Sign Process Syst (2011) 63:227–239 239

	CAL Dataflow Components for an MPEG RVC AVC Baseline Encoder
	Abstract
	Introduction
	RVC Standard
	H.264/AVC Baseline Profile
	RVC Encoding Tools

	Inter Prediction
	Motion Estimation
	Motion Compensation

	Intra Prediction
	Entropy Coding
	Results and Analysis
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

