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Abstract  

 

A novel approach is presented based upon the Linear Matching Method framework in order to 

directly calculate the ratchet limit of structures subjected to arbitrary thermo-mechanical load 

histories. Traditionally, ratchet analysis methods have been based upon the fundamental premise 

of decomposing the cyclic load history into cyclic and constant components respectively, in order 

to assess the magnitude of additional constant loading a structure may accommodate before 

ratcheting occurs. The method proposed in this paper, for the first time, accurately and efficiently 

calculates the ratchet limit with respect to a proportional variation between the cyclic primary and 

secondary loads, as opposed to an additional primary load only. The method is a strain based 

approach and utilises a novel convergence scheme in order to calculate an approximate ratchet 

boundary based upon a predefined target magnitude of ratchet strain per cycle. The ratcheting 

failure mechanism evaluated by the method leads to less conservative ratchet boundaries 

compared to the traditional Bree solution. The method yields the total and plastic strain ranges as 

well as the ratchet strains for various levels of loading between the ratchet and limit load 

boundaries. Two example problems have been utilised in order to verify the proposed 

methodology.  
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1. Introduction 

Power plant components in engineering environments which are subjected to thermo-

mechanical load histories are often susceptible to the various failure phenomena associated with 

cyclic plasticity. In common nuclear structural integrity codes such as ASME III Subsection NB-

3222.5 [1] and ASME III Subsection NH Appendix T, paragraph T-1332(c) [2], structures are 

assessed against the potential for ratcheting to occur through the derivations provided by the 

seminal works of Miller [3] and Bree [4]; which entailed a thin cylinder subjected to a cyclic 

secondary thermal gradient in tandem with a primary steady state mechanical load, using an 

elastic perfectly plastic (EPP) material basis. The work of Bree [4] was based on the significant 

assumption that a constant pressure component remained across the vessel upon reactor shutdown 

(with the thermal loading being completely removed). More realistic practical scenarios may 

actually involve simultaneous increases in thermal and mechanical loading, such as the increase 

in pressure and temperature of steam in a pipe or pressure vessel. Early work investigating 

alternative loading sequences for the generation of load interaction plots can be seen by Ng & 

Moreton [5-7]. The primary emphasis of this work was to analyse the ratchet limit of the Bree 

cylinder when both the cyclic secondary load varied as well as the cyclic primary load, both in 

terms of out-of-phase and in-phase variations between the cyclic thermal and mechanical loads. 

Reinhardt [8] has elaborated on the effects that these load variations have upon the ratchet limit 

with respect to the ASME III Code, whilst Abdel-Karim [9] has investigated in-phase thermo-

mechanical loadings on an axially restrained tube under variable internal pressure and 

temperature (as commonly found  in the LISA publications of Staat & Heitzer [10]. Bradford [11] 

has recently presented an analytical solution for the modified Bree problem; with a primary 

membrane stress cycling in-phase with a secondary bending stress, complete with comprehensive 

definitions of the relevant plastic and ratchet strains per cycle as well as the revised Bree failure 

assessment diagram.  

The Bree problem essentially represents a one dimensional plane stress problem and allows 

for five cyclic plasticity responses to become evident under various combinations of loading, 

namely; purely elastic cycling, strict shakedown (elastic shakedown), global shakedown 

(alternating or reversed plasticity), ratcheting or plastic collapse. These responses can be 

represented in terms of cyclic plastic strain evolution; whereby an initial transient phase is 

followed a steady cycle period; in which the failure response of each mechanism may be 

characterised using either Fig. 1, which depicts the relevant plastic strain evolution of each failure 

response, or a typical load-interaction (Bree) diagram. As is evident in Fig. 1, strict shakedown is 
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typified by the cessation of any plastic straining  per load cycle followed by the return of elastic 

cycling; global shakedown represents a closed loop hysteresis during the steady cycle period in 

which plastic straining occurs within each load cycle but with no net increment of plastic strain; 

ratcheting involves a net strain increment of plastic strain per load cycle (which is of constant 

magnitude per cycle under EPP conditions) with a failure mechanism eventually arising after a 

limited number of load cycles; which is  attributed to the accumulation of the net plastic strain 

increments.  

In order to assess these various cyclic failure mechanisms using modern finite element 

software, standard incremental calculations may be used, typically for verification purposes, as 

such methods possess the ability to analyse any type of load cycle. However these methods are 

often computationally expensive (especially for complex 3D models) and the results can often 

vary due to user interpretation and experience.  

Direct Cyclic Analysis (DCA) [12] is a prominent numerical method which is capable of 

assessing the steady cyclic response of a structure, as it is based on a Fourier series methodology 

which calculates the structural response (based on the displacement) of a problem regardless of 

any load combinations, but with the inherent computational expense of requiring the full load 

cycle to be analysed. Recent developments have utilised DCA in tandem with an automated 

search algorithm that involves a significant number of trial and error calculations and eventually 

yields the ratchet limit [13], as applied in Rolls-Royce’s Hierarchical Finite Element Framework 

(HFEF) [14].  

Several other direct computational methods have been developed in order to assess the steady 

cyclic state and ratchet limit of structures, including the Linear Matching Method (LMM) [15-

20], the lower bound Non-Cyclic Method [21 & 22], the Hybrid Procedure [23] (which is another 

constituent method of Rolls-Royce’s HFEF [14]) and the residual stress decomposition method 

(RSDM) [24]; which seeks to decompose the residual stresses in the steady cycle period for a 

predefined magnitude of cyclic loading. The recently published RSDM-S method [25] utilises the 

RSDM in order to evaluate the shakedown limits of structures undergoing undefined magnitudes 

of cyclic loading. A recently published variation of the Hybrid method [23] has been 

implemented in the form of a lower bound ratchet analysis method by Jappy et al [26, 27]. 

Other numerical methods relevant for ratchet analysis include the isotropic Uniform Modified 

Yield method (UMY) and anisotropic Load Dependent Yield Modification method (LDMY) of 
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Abou-Hanna and McGreevy [28] (which have both emerged from the work of Gokhfeld’s 

simplified ratchet method  [29]) and the non-linear superposition method of Muscat et al [30, 31]. 

Abdalla has also recently presented a methodology similar to the basis of the non-linear 

superposition method in the form of a simplified method which has also seen development with 

respect to hardening models beyond perfect plasticity [32, 33]. 

The LMM is a direct analysis method which seeks to model the behaviour of a structure under 

the action of cyclic loads via repetitive linear simulations involving a matching modulus; which is 

used to replicate the actual nonlinear plastic response of a problem both spatially and in time. The 

LMM was derived on the basis of Koiter’s upper bound formulation [34], with the Refs [15, 16] 

illustrating convergence of the LMM upper bounds for the first time with respect to shakedown 

and plastic collapse limits, with the novel numerical development presented in this paper the 

latest phase in the development of the LMM. The initial development of the LMM for ratchet 

analysis involved a two stage method devised by Ponter and Chen [17-19], which was capable of 

assessing two load points in the defined load cycle, before subsequently being extended to 

include multiple load points in [20]. Recently, the two stage LMM procedure for ratchet analysis 

has been expanded upon via the addition of a novel lower bound approach by Ure et al [35]. 

Similar to other direct ratchet analysis methods [e.g. 21-23, 26, 27], the existing LMM 

framework for ratchet analysis [17-20] is restricted to providing solutions in lieu of the original 

premise of the classic Bree problem; whereby a constant (primary) load component is added to a 

predefined cyclic load history in order to ascertain the ratchet limit. The main reasoning behind 

doing so stems from splitting the assessment of the residual stress history into separate constant 

and varying residual components respectively. 

An initial numerical attempt at analysing the modified thermo-mechanical histories, as 

discussed in [11], using the LMM can be found in a relevant publication [36]. In this method, the 

LMM steady cycle analysis procedure is utilised in tandem with a bisection convergence scheme 

in order to calculate the ratchet limit in an approximate manner. The fundamental premise of the 

LMM bisection procedure is to iteratively calculate the equivalent ratcheting strain for a given 

load cycle, then assess whether or not this is above or below a pre-defined target value of ratchet 

strain per cycle, before commencing a new calculation based upon a bisection of the calculated 

and target values of ratcheting strain. The main disadvantage of this LMM bisection method 

arises due to the search procedure which is implemented in order to achieve a convergent solution 

at the ratchet limit, which may be deemed inefficient and computationally expensive as a result, 
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especially for more complex and realistic models. The LMM bisection procedure also produces 

load multipliers which do not converge in the typical monotonic manner.  

The main goal of this paper is to present the novel generalised LMM numerical procedure, 

which seeks to analyse the ratchet limit and associated failure mechanism with respect to thermo-

mechanical load histories which vary proportionally and strictly in-phase throughout the defined 

load cycle, in a computationally efficient manner. The paper is subsequently structured as 

follows; initially an introduction to the cyclic continuum problem is presented in Section 2, 

followed by a brief description of the LMM steady-cycle analysis procedure in Section 3. Then 

the main Section 4 consisting of the proposed novel LMM ratchet analysis procedure is 

discussed. Two numerical comparisons are then conducted in order to verify the proposed 

methodology in Section 5, followed by a discussion and conclusions based upon these 

comparison results. 

2.  Definition of the arbitrary thermo-mechanical cyclic problem  

The problem may be considered a continuum mechanics viewpoint if an EPP body is 

evaluated which is subjected to a general cyclic load condition. The body has a volume V in 

which a cyclic history of varying temperature 肯岫捲┸ 建岻 is applied alongside a cyclic history of 

varying surface tractions 鶏岫捲┸ 建岻, which act upon a section of the body's surface S, defined here as 

ST. The remaining portion of the surface S, denoted here as SU, is constrained to have a zero 

displacement rate 憲岌 噺 ど. A typical cycle can be deemed to occur between 0 判 建 判 ッ建.  

If the applied cyclic load history is re-interpreted in terms of the cyclic temperature and 

surface forces as; 

                                                    繋岫捲┸ 建岻 噺 膏肯岫捲┸ 建岻 髪 膏鶏岫捲┸ 建岻                                          (1) 

 

where そ is the load parameter and 肯岫捲┸ 建岻 and 鶏岫捲┸ 建岻 are reference cyclic histories of temperature 

and mechanical load respectively, varying with a typical cycle time equal to ッ建. A linear elastic 

solution may be used to represent the thermal and mechanical loads from equation (1) in terms of 

stress; 

                                               膏購葡沈珍ッ 岫捲┸ 建岻 噺 膏購葡沈珍提岫捲┸ 建岻 髪 膏購葡沈珍牒岫捲┸ 建岻                                           (2) 



6 

 

With 購葡沈珍ッ 岫捲┸ 建岻 representing the elastic stress caused by the combined actions of the thermal stress 購葡沈珍提岫捲┸ 建岻 and mechanical stress 購葡沈珍牒岫捲┸ 建岻 respectively. By assigning the load parameter そ to 購葡沈珍ッ 岫捲┸ 建岻, the potential to analyse an entire class of arbitrary loading paths is possible. The cyclic 

problem at hand involves the stress and strain histories being asymptotic to the cyclic state, where 

the Maximum Work Principle holds;  

                          購葡沈珍岫捲┸ 建岻 噺 購葡沈珍岫捲┸ 建 髪 ッ建岻       欠券穴       綱岌沈珍岫捲┸ 建岻 噺 綱岌沈珍岫捲┸ 建 髪 ッ建岻                      (3) 

The total strain rate from equation (3) can be sub-divided into the individual elastic and plastic 

strain rates respectively; 

                                                      綱岌沈珍勅 岫捲┸ 建岻 噺 綱岌沈珍勅 岫捲┸ 建 髪 ッ建岻                                                       (4a) 

                                                      綱岌沈珍椎 岫捲┸ 建岻 噺 綱岌沈珍椎 岫捲┸ 建 髪 ッ建岻                                                       (4b) 

This cyclic state will occur after an initial transient period [29]. The general cyclic problem is 

also assumed to incorporate a convex yield condition in order to define the plastic strains; 

                                                                   血岫購沈珍岻 判 ど                                                                   (5) 

as well as the use of an associated flow rule; 

                                                             綱岌沈珍牒 噺 糠岌 擢捗擢蹄日乳  ┸ 血 噺 ど                                                          (6) 

where 糠岌  is the scalar plastic multiplier, thus the Maximum Work Principle may be stipulated as; 

                                                              岫購沈珍頂 伐 購沈珍茅 岻綱岌沈珍頂 半 ど                                                            (7) 

With 購沈珍頂  is representative of the stress at yield 血盤購沈珍頂 匪 噺 ど and 綱岌沈珍頂  is related to equation (6) in 

terms of the plastic strain rate 綱岌沈珍牒 . The term 購沈珍茅  depicts any allowable state of stress which 

satisfies the yield condition from equation (5). 

The total stress solution relevant to the cyclic problem can be presented as;  

                                                       購葡沈珍岫捲┸ 建岻 噺 膏購葡沈珍ッ 岫捲┸ 建岻 髪 貢沈珍追 岫捲┸ 建岻                                              (8) 



7 

 

The problem may be construed as; the elastic solution 購葡沈珍ッ 岫捲┸ 建岻 (scaled by ʄ) and an 

accumulated residual stress history 貢沈珍追 岫捲┸ 建岻 that represents the varying residual stresses within 

each cycle caused by any cyclic plasticity, which satisfies the condition; 

                                                     貢沈珍追 岫捲┸ ど岻 噺 貢沈珍追 岫捲┸ ッ建岻 噺 貢違沈珍追 岫捲岻                                                (9) 

The constant residual stress 貢違沈珍追 岫捲岻 from equation (9) is a constituent component of the 

accumulated residual stress 貢沈珍追 岫捲┸ 建岻 and can be seen to represent the state of residual stress at the 

beginning and end of each cycle. This term will be expanded upon further in Section 3, in the 

context of the numerical scheme.  

The preceding discussion has mostly focussed on the cyclic stress histories, but the novel method 

which will be presented in this paper is fundamentally based on the strain rate histories associated 

with the ratcheting phenomena.  

For non-ratcheting behaviour (where 綱岌沈珍椎 塙 ど岻 we have; 

                                                                   ッ綱沈珍椎 噺  豹 綱岌沈珍椎ッ痛
待 穴建 噺 ど                                                             岫など岻 

However, for ratcheting behaviour, the varying plastic strain rate 綱岌沈珍椎  is also non-zero but will 

invoke a net structural displacement mechanism per cycle. i.e; 

                                      ッ綱沈珍椎 噺  豹 綱岌沈珍椎ッ痛
待 穴建 塙 ど   潔剣兼喧欠建件決健結 拳件建月  ッ憲沈珍椎  塙 ど                                 岫なな岻 

It is worth noting that the relationship in equation (9) represents a closed loop of varying residual 

stress fields across all loading and unloading events within the load cycle, although this closed 

loop residual stress condition does not strictly preclude a net ratchet strain from occurring from 

one cycle to another (which is compatible with a net displacement ッ憲沈珍椎 ); even though the cyclic 

stresses may have reached steady cyclic conditions.  

This notion is also applicable to the asymptotic relationships in equations (3 & 4), i.e. ratcheting 

can still occur even when these stresses and strain rates exhibit a closed form solution from one 

cycle to the next. 
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3. Overview of the LMM direct steady cycle assessment (DSCA) procedure  

 

The novel method that will be presented in Section 4 of this paper is based upon the steady-

cycle analysis procedure of the LMM from [20], therefore a brief insight into this numerical 

scheme will be provided in this section to serve as a background for future discussion. The LMM 

steady-cycle analysis procedure may now be referred to as Direct Steady Cycle Analysis (DSCA) 

in the overall context of LMM framework.  

In order to analyse a typical load cycle using the LMM, a series of elastic solutions are 

generated at various discrete time points within the cycle (for example at n locations in time, so 

that a subsequent series of elastic solutions is generated, 購葡沈珍ッ 岫捲┸ 建津岻, where 券 噺 な┸ ┼ 軽 total 

number of load instances), such that the most significant stress ranges in the load cycle are 

encapsulated and hence the most significant plastic strains are used to correctly identify and 

calculate the ratchet mechanism caused by a given load cycle. It is postulated that the cyclic 

plastic strains will only occur at the load extremes stipulated by 券 噺 な┸ ┼ 軽.  

By doing so, all other time points within the cycle are deemed innocuous in terms of 

significant plastic straining (due to the convexity of the yield surface) and are assumed to lie 

within the von Mises yield surface, thus allowing vast computational efficiency to be gained over 

cycle-by-cycle analysis (CCA) methods, which must analyse the entire load cycle and utilise a 

search procedure in order to obtain the ratchet limit itself. 

The iterative DSCA procedure is concerned with the calculation of the accumulated residual 

stress history 貢沈珍追 岫捲┸ 建岻 (from equation (8)) which is attributed to the history of varying plastic 

strains associated with the cyclic loads. The notation 貢沈珍追 岫捲┸ 建岻 refers to the location in the volume 

(x) and point time during the cycle (t), with the location (x) usually representative of an 

integration point in the FE mesh of the model.    

By stipulating that the plastic strain increments may only occur at a predefined number of load 

extremes (券 噺 な┸ ┼ 軽岻, we can sum the individual plastic strains ッ綱沈珍津  which occur at each load 

extreme in order to obtain the ratcheting strain over the cycle ッ綱沈珍眺  ; 

 

                                                              件┻ 結┻       ッ綱沈珍眺 噺 布 ッ綱沈珍津朝
津退怠                                                                 岫なに岻 
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This is under the assumption that the loads follow a series of straight line paths in stress space and 

a strictly convex yield criterion is obeyed, i.e. all other load points in the cycle will be assumed to 

lie within the yield surface and hence rendered insignificant. The numerical DSCA methodology 

is based upon a series of iterative cycles which are defined as m = 1, 2... M. Within each iterative 

sub-cycle, there will be a series of increments N, i.e. for each load extreme ranging from 券 噺な┸ ┼ 軽. Therefore, the primary emphasis of the LMM DSCA procedure is to iteratively calculate 

each individual varying residual stress ッ貢沈珍追 岫捲┸ 建津岻陳 associated with each elastic solution 購葡沈珍ッ 岫捲┸ 建津岻, from 券 噺 な┸ ┼ 軽, until convergence is reached at cycle M. Upon reaching a converged 

solution, we can represent the constant residual stress term from equation (9) as; 

 

                                                       貢違沈珍追 岫捲岻 噺 布 布 ッ貢沈珍追 岫捲┸ 建津岻陳                                                         岫なぬ岻朝
津退怠

暢
陳退怠  

 

Thus, an equivalent expression for the accumulated residual stress 貢沈珍追 岫捲┸ 建津岻 at convergence can 

be seen in equation (14) as; 

                                               貢沈珍追 岫捲┸ 建津岻 噺 貢違沈珍追 岫捲岻 髪 布 ッ貢沈珍追 岫捲┸ 建賃岻暢                                                  岫なね岻津
賃退怠  

(Note that the definition of 貢沈珍追 岫捲┸ 建津岻陳 shown in Fig. 2 depicts the iterative and unconverged 

value of the accumulated residual stress history). 

Convergence of the DSCA procedure can be adjudged using several criterions, but the variation 

in the matching modulus is most commonly used in order to define an acceptable level of 

convergence, i.e. when the change in modulus between iterative cycles reaches a specific target 

parameter. A flow-chart of LMM DSCA procedure has been highlighted in Fig. 2. A more 

comprehensive encapsulation of the iterative DSCA procedure is provided in [20].  
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4. Proposed novel LMM generalised procedure for ratcheting analysis of arbitrary cyclic 

thermo-mechanical loads  

4.1 Background to proposed novel method 

In the following sections of this paper the modified load regime consisting of cyclic thermal 

and mechanical loads which simultaneously vary in a proportional manner shall be referred to as 

Type i) loading and the classic Bree loading scenario of a cyclic thermal load range plus an 

additional constant mechanical load shall be referred to as Type ii) loading. It is worth noting that 

for Type ii) loading, the fixed cyclic load range can include thermal and mechanical loads 

respectively, but with the ratchet limit still being identified with respect to an additional constant 

(primary) loading. The generalised LMM presented in this paper is implemented using the 

UMAT and URDFIL subroutines in ABAQUS FE software [37].  

As far as the Authors are aware there are no plasticity bounding theorems which are capable 

of directly assessing Type i) cyclic thermo-mechanical load histories. In order to overcome this 

hurdle, the LMM numerical procedure introduced in this paper has incorporated the DSCA 

procedure developed in [20] into a revised ratcheting analysis scheme in order to tackle the Type 

i) thermo-mechanical problem in a computationally efficient manner. This enables the calculation 

of ratchet limits with respect to proportional cyclic load variations to be conducted, with the 

ratchet limit being defined in terms of a predefined magnitude of maximum equivalent ratchet 

strain per cycle.  

The novel LMM numerical scheme that is presented in this paper seeks to define the combined 

action of the cyclic thermal and mechanical loads via single load parameter. This logic is depicted 

in Fig. 3 where the scaling path of the previously mentioned two stage LMM ratchet analysis 

scheme from [20] (shown in red) and the proposed novel numerical method in this paper (shown 

in green) can be seen. Fig. 3 essentially represents a re-interpretation of the class of problem, by 

means of the relevant load-interaction schematic, for the modified Type i) loading regime 

compared to that of the original Type ii) Bree case. As is evident in Fig. 3 (from the analytical 

results of Bradford [11]), for Type i) loading compared to the Bree Type ii) loading, an 

augmented and noticeably more benign ratchet boundary is observed. It is also apparent from Fig. 

3 that the strict shakedown limit (or reverse plasticity limit) varies from the existing Bree solution 

due to the variation in the cyclic stress range; as a result of considering a (cyclic) proportional 

load scaling path.  



11 

 

In order to calibrate the numerical method presented in this paper as well as to provide 

verification data, the analytical solutions of Bradford [11] for the Bree cylinder have been 

utilised. The second example involving the holed plate problem has been tested and verified using 

standard CCA techniques. The holed plate is useful for the purpose of illustrating the failure 

mechanism associated with a proportional loading regime, as the typical solution of the ratchet 

limit for an additional constant loading is well known, which serves to further emphasise the 

variation in the results presented later in this paper. Traditional CCA is used for verification 

purposes where needed, with EPP constitutive modelling being used as a standard. 

4.2 The proposed novel numerical method 

The novel method presented in this paper is herein referenced as the LMM generalised ratchet 

analysis procedure. This method utilises DSCA in order to assess the maximum ratchet strain 

across a structure, but instead of using a bisection convergence scheme [36], the load multiplier is 

reduced using an iterative scheme which decreases the rate of convergence relative to the applied 

loading and the iteratively scaled elastic stresses; which enables the decrement size between each 

iterative load multiplier to be reduced as the ratchet limit is approached.  

The method commences by calculating the limit load due to the applied elastic stresses, 購葡沈珍ッ 岫捲┸ 建津岻, which enables any applied reference load to be used, as well as ensuring a logical and 

efficient starting location for the analysis to ensure that a monotonic convergence scheme is 

observed. The limit load is calculated as a special case of the standard LMM shakedown 

procedure [38], which is modified so that only a single load instance forms the load cycle. The 

DSCA method as a stand-alone procedure can be used to obtain the steady cycle stresses and 

strain rates for a given combination of loading, similar to the application of DCA [12], but must 

be utilised with an appropriate convergence scheme in order to directly locate the ratchet limit in 

an efficient manner.  

The novel convergence process of the generalised methodology is fundamentally based on 

setting a desired tolerance on the percentage difference between the load multipliers obtained 

from each iterative sub-cycle of the method; such that initial load multiplier (corresponding to the 

starting limit load starting point) eventually converges to load multipliers 膏沈 and 膏沈袋怠 which are 

within 1% of one another between sub-cycles. Where 膏沈 = previous sub-cycle multiplier and 膏沈袋怠 = updated multiplier. If a percentage error between consecutive load multipliers is set to a 

value e (e.g. 1%), this can be seen as; 
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碇日 貸碇日甜迭碇日 判 なガ 噺 結                                                         (15) 

 

Each sub-cycle involves calculating the maximum equivalent ratchet strain 綱違陳銚掴眺  across the 

structure for a given set of elastic stresses 購葡沈珍ッ 岫捲┸ 建津岻 scaled by a load multiplier 膏沈. The quantity 紅 

is defined as; 

 

                                                              紅 噺 綱違陳銚掴眺 ┻ 勅碇日悌頓馴                                                               (16) 

 

Where 綱寵眺 is the target magnitude of equivalent ratchet strain per cycle and is used as the stopping 

criterion of the method; to define when the ratcheting mechanism is deemed to have been 

reached. The collective entities in the RHS of equation (16), which are used in order to reduce the 

previous iterative value of  膏沈 , can collectively be named as the decrement term 紅.  

 

Therefore the relationship used to calculate a new load multiplier 膏沈袋怠 can be stipulated as; 

 

                                                               膏沈袋怠 噺 膏件 伐 紅                                                            (17) 

 

The predefined value of 綱寵眺 is typically no less than 0.02%/cycle, due to numerical errors that can 

arise in the calculation of ratcheting strain using modern FE software.  

In equation (17), it is apparent that as the calculated value of 綱違陳銚掴眺  approaches the target value 

of 綱寵眺, then the variation between consecutive load multipliers will reduce to 1% (i.e. 膏沈袋怠 噺 膏沈  伐結膏沈).This logic ensures that in the initial sub-cycles, where 綱違陳銚掴眺  is relatively large (due to starting 

from the limit load), then the resulting decrement between the initial iterative load multipliers will 

also be comparatively large. As the load multipliers begin to monotonically reduce after several 

sub-cycles, the magnitude of 綱違陳銚掴眺  calculated also reduces, which naturally means that the 

decrement between 膏沈袋怠 and 膏沈 will also reduce, ensuring a smooth convergence scheme as well 

as being computationally efficient. Equation (17) ensures the decrement size is dynamically 

changed based upon the iteratively scaled elastic stress fields and their relative value of 綱違陳銚掴眺 , as 

opposed to using a fixed decrement size which may be deemed computationally inefficient. 

However, equation (17) alone is insufficient in ensuring that adequate decrements are 

observed between each consecutive sub-cycle and as such a restricting criterion has been 
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implemented on each value of 綱違陳銚掴眺  obtained which ensures that the variation between 膏沈袋怠 and 膏沈 across each iterative sub-cycle is adequate, i.e.; 

 

                                                               If    綱違陳銚掴眺 伴 怠懲 ┻ 悌頓馴勅                                                          (18) 

 

                                                          Then      綱違陳銚掴眺 噺 怠懲 ┻ 悌頓馴勅                                                        (19) 

 

Where K is a user defined value which stipulates the minimum number of sub-cycles that must be 

calculated from the initial load multiplier (at the limit load in the first sub-cycle) to the converged 

solution at the ratchet limit. Hence the quantity 1/K in equation (18) is in effect representative of 

the rate of convergence, e.g. 1/K = 1/10 (i.e. 1/minimum sub-cycles specified) = 0.1. As K is an 

important parameter with regards to convergence, the Authors recommend a default value of 10 

be used as a minimum. The entity 綱寵眺/e in equation (18) is fixed throughout the calculation. An 

overview of the LMM generalised ratchet analysis numerical procedure is summarised in Fig. 4, 

for an example initial cycle of the process.   

The convergence controls shown through equations (17-19) do not strictly prohibit the load 

multiplier from crossing the target solution at the ratchet limit and hence a safeguard has been put 

in place in order to diminish this effect so that if this does occur then it becomes negligible. The 

safeguard process put in place involves assessing the magnitude of 綱違陳銚掴眺  after each sub-cycle and 

if this value falls below the target magnitude 綱寵眺 after any sub-cycle, then the convergence criteria 

will be drastically reduced in order to minimise this effect, i.e. 紅 捲 ど┻どの from equation (17) and 

therefore the subsequent variation of 膏沈袋怠 in equation (17) between sub-cycles will become 

significantly smaller as a result. This process places further importance on the term K (which is 

specified a priori) and as such this value should be no smaller than 10 in order to ensure that if 膏沈袋怠 does fall below the actual ratchet load multiplier 膏眺 then the resulting effect will be 

negligible.  

A further facet of the method includes the potential for considerable computational efficiency 

to be gained if the initial elastic reference loads (scaled along a proportional trajectory in the load 

domain) correspond to a ratchet limit which is coincidental with the limit load boundary, as can 

be seen in Fig. 3 for cyclic thermal loads below 1 on the normalised plot. In such an event, the 

first sub-cycle will produce a value of 綱違陳銚掴眺  which is almost equal to 綱寵眺 (within a certain 

tolerance, e.g. 綱違陳銚掴眺 判 の┻ 綱寵眺 in the first sub-cycle). If this situation arises in the first sub-cycle, the 
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convergence parameters e and K are altered such that e=e/20 (e.g. 1%/20), K = K +10 and 紅 噺 紅 捲 ど┻どの. By doing so, the subsequent reduction in the load multipliers according to equation 

(17) will significantly small, as the method will have effectively recognised that the ratchet and 

limit load are coincidental.   

The main reason behind the logic in equations (15-19) is to provide a load multiplier reduction 

scheme that reflects the current state of strain at the end of each iterative sub-cycle in the form of 

a suitable ratio and target convergence tolerance. Equations (15-17) provide numerically 

efficiently reductions of the load multiplier in terms of the ratio of target ratchet strain to the 

quantity of ratchet strain calculated after each sub-cycle across the structure.  

Various convergence criteria may be used to govern how many increments will occur during 

each sub-cycle of the method, however the variation of the linear matching modulus from one 

sub-cycle to the next (using volume integrals of the shear modulus, i.e. for each FE integration 

point across each load instance) is deemed as being most practical, within a certain pre-defined 

convergence tolerance. 

Because the proposed numerical procedure commences the calculation from the limit load 

region and converges to the ratchet limit (for a particular loading path), the method can also post-

process the maximum plastic and total strain ranges associated with each of the various scaled 

elastic stresses which are produced by each iterative load multiplier as そ converges to the ratchet 

limit. These strain ranges provide key information concerning fatigue crack initiation in low cycle 

fatigue. 

 

5.  Numerical examples 

 

5.1 Bree cylinder 

The Bree cylinder problem provides a simple uniaxial example of the method, as well as 

allowing for comparisons to be made with published analytical results for verification purposes 

[11]. The plane stress Bree cylinder case has been illustrated in Fig. 5 i), with the problem 

representative of the fuel clad in a fast reactor configuration [4]. A cyclic thermal load was 

applied to the inner surface of the cylinder, alongside a cyclic internal pressure. The applied 

cyclic load history is depicted in Fig. 5 ii), where both the thermal and mechanical loads can be 

seen to vary in-phase with one another, thus the problem may be characterised by two load 

extremes; on-load (購椎 and 肯待 髪 ッ肯) and off-load (where both loads are simultaneously removed 

to a zero stress state). This loading history can also be characterised in a load domain plot, as 
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shown in Fig. 5 iii).  The model was constrained vertically at one end and allowed to expand in-

plane at the other, with a thrust applied to the free end to simulate the closed-end condition. The 

FE model is constructed using plane stress conditions in order to generate comparison results with 

Bradford [11]. Plane stress modelling conditions have been utilised in order to develop the novel 

numerical LMM presented in this paper; as for a von Mises yield condition the solution for plane 

stress equals the Tresca solution, thus ensuring the most conservative case of the Bree problem is 

modelled. The following temperature independent material properties were used in the analysis: 

thermal conductivity = 0.0215 W/mm°C, Young’s Modulus = 184GPa, Poisson’s ratio = 0.3, 

coefficient of thermal expansion = 1.84e
-5

°C
-1 

and yield strength = 205 MPa. 

In Fig. 6, the complete cyclic plasticity safety domain diagram for the modified Bree problem 

has been derived, using the LMM generalised procedure discussed in Section 4.2, which clearly 

depicts the relevant regions for each of the cyclic failure mechanisms. The analytical solution 

provided by Bradford [11] can be seen in Fig. 6 for comparison and verification purposes.  In Fig. 

6, two boundaries relative to the ASME III Code safety limits can also be seen; i.e. relative to the 

original and modified Bree problems respectively. The approximate ratchet limit found using the 

LMM generalised method (with respect to a ratchet strain per cycle equal to 0.02%) is also 

directly compared to the ratchet limit found using the bisection method from [36] in Fig. 6, where 

the abscissa represents the cyclic mechanical load and the ordinate displays the cyclic thermal 

load as normal, with both axes being normalised against the relative yield strength of the 

material. The ratchet limits obtained via the LMM generalised procedure and the LMM bisection 

method can be seen to vary marginally due to the convergence schemes used, i.e. a monotonic 

reduction scheme compared to a bisection search routine.  

For this problem, 20 increments per load instance were used within each iterative sub-cycle 

(i.e. each sub-cycle contained 40 increments due to two load instances being modelled). In order 

to generate the full ratcheting boundary as seen in Fig. 6, several LMM calculations have been 

performed by using various load paths, with three distinct loading paths being used for the 

purpose of results post-processing, labelled as ‘Load Case 1-3’ in Table. 1. For each individual 

load path, the LMM generalised procedure begins by calculating the limit load boundary, in order 

to ensure an adequate starting point for the calculation as well as ensuring a monotonic reduction 

of the load multiplier.  

Convergence characteristics of the load multiplier そ versus sub-cycle number can be seen in 

Fig. 7, which depicts the results of analysing the effects of altering the total amount of increments 
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per sub-cycle on the convergence of the method (relative to Load Case 3 in this instance), where 

L represents a fixed amount of increments per each load instance for the purpose of this 

convergence study (within each iterative sub-cycle of the method). Even though the load 

multiplier shows similar convergence characteristics for a range of total sub-cycle increment 

values in Fig. 7, the strain magnitudes and strain ranges obtained from the method are naturally 

more accurate as the total amount of increments per sub-cycle is increased. The analytical ratchet 

limit in Fig. 7 corresponds to the ratchet boundary provided by Bradford [11], denoted as 膏眺挑彫暢彫脹. 

The results in Fig. 7 illustrate that the novel method presented in this paper is not a lower or upper 

bound solution, with the total amount of increments used per sub-cycle being an important 

parameter relative to the accuracy of the results obtained. 

In Fig. 8, the variation in maximum equivalent ratchet strain relative to the normalised load 

multiplier can be seen along a proportional scaling path between the ratchet limit and limit load 

boundary, with the load multiplier そ being normalised against the final converged multiplier at the 

ratchet limit 膏眺 for each load case for clarity. Fig. 8 shows a common trend as the load multiplier 

approaches the ratchet limit from the limit load boundary, with the limit load multiplier 膏挑 shown 

for illustration purposes. Naturally, the ranges of load multipliers shown in Fig. 8 are relative to 

the distance between the ratchet limit and collapse boundary for each of the 3 distinct loading 

paths used. In Fig. 8, all of the results can be seen to converge to the target 0.02% predefined 

ratcheting strain measure at a normalised loading equal to 1 (i.e. at the numerical ratchet limit).  

Fig. 9 illustrates the variation of the maximum plastic strain and maximum total strain ranges 

relative to the normalised load multiplier (from the ratchet limit to the limit load boundary), with 

both strain ranges being based on an EPP model. In Figs. 8 & 9, as the load multipliers are 

normalised against the exact ratchet limit multiplier, values corresponding to approximately 1 on 

the x-axis represent the ratchet limit, with the plot lengths varying based upon how far the ratchet 

limit is from the limit load boundary for each particular load case. In Figs. 8 & 9, the limit load 

multiplier for each load case has also been highlighted. 

5.2 Holed plate  

The holed plate provides a basic 3D example in order to illustrate the applicability of the 

method beyond the simple uniaxial Bree case. This problem however is typically known for 

loading regimes similar to that of the Bree cylinder and as such results for proportional cyclic 

thermo-mechanical histories are not known by the Authors to currently exist in the existing 
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literature. Ratchet limits derived on the typical combined action of cyclic thermal loading plus an 

additional constant load will however provide a complimentary background to the novel modified 

limits presented in this paper. Hence this numerical benchmark example will use published results 

for the typical loading scenario from [20], in order to generate comparisons with the modified 

proportional regime of cyclic thermal loading plus cyclic mechanical loading. The problem 

consists of an applied temperature distribution ∆し at the edge of the hole radius, in tandem with a 

uniaxial tension P applied on opposite edges of the plate, as depicted in Fig. 10 i). The FE mesh 

used for the analysis is shown in Fig 10. ii). The holed plate has the same dimensions as used in 

[20], with the ratio between the diameter D of the hole and the length L of the plate equalling 0.2, 

with the ratio of the depth of the plate to the length L of the plate is 0.05.  

The temperature-independent material data for the holed plate include; a yield stress 購槻 噺ぬはど警鶏欠, elastic modulus E = 208 GPa, Poisson’s ratio 懸 噺 ど┻ぬ and a coefficient of thermal 

expansion equal to の 捲 など貸泰 ソ系貸怠. A quarter model of the plate is used for the analysis due to 

symmetry conditions, with 20-node quadratic brick elements (ABAQUS C3D20R) used for the 

structural analysis. A thermal analysis is conducted with ッ肯 噺 などどソ系 at the inner bore of the 

hole, with the edge of the plate remaining at a constant 肯待  噺 どソ系 (using DC3D20). This 

temperature field is then scaled in order to have various cyclic temperature ranges for the 

generation of a Bree-like interaction diagram. The maximum thermo-elastic von Mises effective 

stress occurs at the edge of the hole, which is governed by the applied temperature difference ッ肯. 

Hence the extremes of the load history are characterised by 購牒 and ッ肯, as depicted in Fig. 5 ii), 

i.e. the temperature around the edge of the hole 肯違岫建岻 varies between 肯待 and 肯待 髪 ッ肯.  

In Fig. 11, two approximate ratchet limits are shown for the holed plate problem, relative to a 

maximum equivalent ratchet strain tolerance equal to 0.04%, obtained using the LMM 

generalised procedure and the LMM bisection method from [36] for comparison.  

The target tolerance for this problem has been increased to 0.04%/cycle due to the 3D nature 

of the problem. Similar to the Bree example, three individual loading paths have been used for the 

purpose of results post-processing, labelled as ‘Load Case 1-3’ in Table. 2. Details of the load 

multiplier convergence characteristics relative to each iterative sub-cycle for the holed plate 

problem can be seen in Fig. 12, for Load Case 1-3 respectively. Information regarding the 

maximum equivalent ratchet strain relative to the three loading paths used (Load Cases 1-3) can 

be seen in Fig. 13, as well as details of the maximum equivalent plastic & total strain ranges in 

Fig. 14. In Figs. 13 & 14 the load multipliers are normalised against the converged numerical 
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ratchet multiplier for each load case. In Figs. 13 & 14 it is evident that the ratcheting strain and 

maximum plastic/total strain ranges follow a similar trend relative to the level of loading; as the 

load multiplier increases the ratchet strain and strain ranges steadily rise together in a near 

proportional manner with the load multiplier, as the level of loading approaches the collapse 

limit.  

Another note to consider from Fig. 14 includes observing that both of the strain ranges do not 

tend to zero as the converged point corresponds to the converged ratchet limit at 膏【膏眺  噺 な as 

each respective strain range will reach zero at the strict shakedown limit instead of the ratchet 

limit.   In order to verify the ratchet limits provided by the LMM generalised procedure several 

individual CCA calculations were conducted, as indicated by the blue, yellow and red markers in 

Fig. 11. In Fig. 11, for the traditional case of a constant loading being applied to a cyclic thermal 

stress range, the blue CCA load case locations indicate global shakedown, with the yellow and 

red CCA load case locations illustrating ratcheting behaviour. Conversely for the modified 

proportional problem, the yellow and blue CCA markers depict global shakedown, whilst the red 

CCA markers still exhibit ratcheting. Details relating to the magnitudes of plastic strain from 

CCA load cases 1, 2, 3 and 4 (from Fig. 11) for 100 applied load cycles, using an elastic-perfectly 

plastic material model, can be seen in Fig. 15. These results illustrate that CCA load cases 1 & 3 

exhibit global shakedown whilst CCA load cases 2 & 4 display ratcheting behaviour for the 

proportional problem. These CCA results verify the change in ratcheting mechanism associated 

with cyclic thermo-mechanical loads which vary strictly in-phase compared to the original 

premise of applying a constant loading to a cyclic stress range.  

The ratcheting failure mechanism produced by the novel LMM presented in this paper and the 

contours of plastic strain range associated with reference Load Case 2 can be seen in Figs. 16 & 

17 respectively, for two levels of loading; i) at the numerical ratchet limit and ii) a level of 

loading 膏 噺 な┻はば between the ratchet and collapse limit (i.e. 膏  times the cyclic thermal and 

mechanical components of Load Case 2). 

6.  Discussion  

The basic uniaxial plane stress Bree model provides a useful example in displaying the 

relevant plasticity mechanisms but does not serve as a fully robust test of the proposed numerical 

method due to the uniaxial nature of the ratcheting mechanism. The holed plate provides a step up 

in complexity by introducing 3D modelling conditions, but with no analytical solutions available. 
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For this problem CCA is used to validate the results generated. The holed plate remains a useful 

example due to the adequate level of complexity of the problem and the ease of conducting 

verification by CCA calculations, as well as the relatively large amount of solutions published in 

the literature with respect to an additional constant loading; which further exacerbate the 

differences in the modified ratchet limits discussed in this paper.  

The novel LMM generalised method presented in this paper utilises a dynamically varying 

convergence scheme, which involves large initial increments in the iterative load multipliers, 

which eventually reduce in size as the ratchet limit is approached. The generalised method can 

also take into account and utilise the fact that for the proportional ratchet limit, at certain load 

levels, the ratchet limit will coincide with the limit load. If the structural problem being analysed 

contains a cracked body, then naturally no strict shakedown limit will be present and hence the 

bisection method [36] is incapable of assessing such problems. The generalised method however 

commences the iterative calculation process from the limit point (with the option to also conduct 

an initial shakedown analysis if needed), which eliminates this concern.  

By starting from the limit load, the efficiency of the generalised method is much improved and 

the convergence is guaranteed compared to methods which may begin from starting stresses 

which are well beyond the collapse load. For ratcheting problems which involve purely cyclic 

mechanical loads, the ratchet limit will intersect the y-axis at a particular location and the 

difference between the ratchet limit and limit load will often be relatively small, meaning the 

generalised method will be notably effective in such circumstances. 

One of the most notable features of the results presented in this paper is the modified ratchet 

limits produced by the novel LMM. Details of such modified interaction diagrams have a small 

footprint in the relevant literature, especially with regards to relating these augmented limits to 

realistic structural assessments and the relative outcome for Code assessments. By generating a 

greater understanding of the failure mechanism associated with arbitrary thermo-mechanical load 

histories, more overall efficiency may be gained in modern nuclear components by raising the 

operational conditions and removing any inherent conservatism that may exist. Such 

conservatism can be seen in the modified ASME III shakedown safety envelope which is shown 

to be over restrictive for all combinations of load types; which is derived by considering the 

primary stress to also have a range.  
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An underpinning facet of the method presented in this paper involves the use of ratchet 

tolerant design, via a strain based assessment procedure. The use of such a phenomenon for the 

cyclic problem at hand allows for realistic structural assessments to be performed which respect 

to arbitrary cyclic thermo-mechanical loads. A relevant ratcheting criterion to compliment the 

ratchet tolerant design concept used in this paper stems from the JPVRC ratcheting check [39], 

which involves ensuring that the total equivalent ratchet strain at the end of each cycle displays a 

decreasing trend, whilst the maximum value of the equivalent ratchet strain after each cycle is 

less than 0.01%. Around 5 to 10 cycles is suggested in order to obtain this 0.01% magnitude for 

practical reasons and hence this is deemed to show that the structure is shaking down to either 

elastic action or closed loop plastic cycling [39, 40].  

7. Conclusions  

A novel ratchet analysis procedure for evaluating proportional thermo-mechanical cyclic load 

histories has been presented, tested and verified in this paper using the LMM framework. The 

method presented in this paper has been used to overcome the difficulties associated with the 

LMM and the extended version of Koiter’s upper bound for ratchet analysis, thus providing an 

insight into the consequences of altering the cyclic thermo-mechanical loads and the subsequent 

effect on the ratcheting failure mechanism relative to the ASME III Code. In order to assess the 

applicability of the method, two simple benchmark cases have been used to illustrate the 

numerical procedure in the Bree cylinder and holed plate problems.  Detailed discussion has been 

provided in order to emphasise the feasibility of using such a ratchet tolerant design procedure for 

generating complete cyclic plasticity failure diagrams as well as unique verification analysis 

cases; where traditional cycle by cycle procedures can have difficulty in clarifying the actual 

failure response for 3D structural problems. The most apparent feature from the results presented 

in this paper is the modified ratchet limits produced from consideration of arbitrary thermo-

mechanical load cyclic load histories. The effects of such phenomenon have herein been alluded 

to with respect to typical nuclear Code assessments for ratcheting and shakedown. 

Acknowledgements 

The authors gratefully acknowledge the Nuclear EngD centre of the United Kingdom, Michael 

Martin and Rolls-Royce Power Engineering plc. and the University of Strathclyde for their 

support during this work. 

 



21 

 

References  

[1] ASME Boiler and Pressure Vessel Code, Section III, Rules for construction of nuclear power 

plant components, Div. 1, Subsection NB, class 1 components, 2007. 

[2] ASME Boiler and Pressure Vessel Code, Section III, Rules for construction of nuclear power 

plant components, Div. 1, Subsection NH, Class 1 components in elevated temperature service, 

2004. 

[3] Miller, D.R, Thermal-stress ratchet mechanism in pressure vessels, Journal of Basic 

Engineering, Transactions of ASME, pp.190-196, 1959. 

[4] Bree J, Elasto-plastic behaviour of thin tubes subjected to internal pressure and intermittent 

heat fluxes with application to fast reactor fuel elements. Journal Strain Analysis, pp.226-238, 

1967. 

[5] Ng, H. W., Moreton, D. N., Engineering approaches to high temperature design, Chapter 6, 

Bree diagrams for alternative loading sequences, (edited by Wilshire and Owen), 1983. 

[6] Ng, H. W., Moreton, D. N., Ratchetting rates for a Bree cylinder subjected to in-phase and 

out-of-phase loading. J Strain Analysis Eng Des, 21;1, 1986. 

[7] Ng, H. W., Moreton, D. N., Alternating plasticity at the surfaces of a Bree cylinder subjected 

to in-phase and out-of-phase loading. J Strain Analysis Eng Des, 22;107, 1987. 

[8] Reinhardt, W., Distinguishing ratcheting and shakedown conditions in pressure vessels, 

PVP2003-1885, ASME PVP Conference, Cleveland, Ohio, USA, 2003. 

[9] Abdel Karim, M., Shakedown of complex structures according to various hardening rules, 

International Journal of Pressure Vessels and Piping, vol. 82, pp 427-458, 2005. 

[10] Staat, M., Heitzer, M., LISA - A European project for FEM-based limit and shakedown 

analysis. Nuclear Engineering and Design, 206, pp.151–166, 2001. 

[11] Bradford, R. A. W., The Bree problem with primary load cycling in-phase with the 

secondary load, International Journal of Pressure Vessels and Piping, vol. 99–100,  pp.44–50, 

2012. 

[12] Nguyen-Tajan et al, Determination of the stabilized response of a structure undergoing cyclic 

thermal-mechanical loads by a direct cyclic method. ABAQUS Users' Conference Proceedings, 

2003. 

[13] Martin, M. Application of direct cyclic analysis to the prediction of plastic shakedown of 

nuclear power plant components. Pressure Vessels and Piping, Chicago, Illinois, 2008. 

[14] M. Martin, L. Rawson, D. Rice, A Hierarchical Finite Element Framework for the 

Assessment of Pressure Vessels to the ASME III Code, ASME Pressure Vessels and Piping 

Conference: Volume 1,  pp. 125–135, 2010. 



22 

 

[15] Ponter, A.R.S, Carter, K.F., Limit state solutions, based upon linear solutions with a spatially 

varying elastic modulus, Comput. Methods  Appl. Mech. Engrg. 140,  pp.237-258, 1997. 

[16] Ponter, A.R.S, Carter, K.F., Shakedown state simulation techniques based on linear elastic 

solutions, Comput. Methods Appl. Mech. Engrg. 140; pp.259-279, 1997. 

[17] Ponter A. R. S, Chen H. F, A minimum theorem for cyclic loading in excess of shakedown, 

with applications to the evaluation of a ratchet limit, European Journal of Mechanics A/Solids, 20 

(4) pp. 539-554, 2001. 

[18] Chen H. F, Ponter A. R. S, A method for the evaluation of a ratchet limit and the amplitude 

of plastic strain for bodies subjected to cyclic loading, European Journal of Mechanics A/Solids, 

20 (4), pp. 555-572, 2001. 

[19] Chen, H., Ponter, A.R.S, Linear matching method on the evaluation of plastic and creep 

behaviours for bodies subjected to cyclic thermal and mechanical loading, Int. J. Numer. Meth. 

Engng, 68: pp. 13-32, 2006. 

[20] Chen, H.F., Ponter, A.R.S., A direct method on the evaluation of ratchet limit, Journal of 

Pressure Vessel Technology, 132(4), 2010. 

[21] Adibi-Asl, R., Reinhardt, W., Non-cyclic shakedown/ratcheting boundary determination – 

Part 1: Analytical approach,  International Journal of Pressure Vessels and Piping, vol. 88, no. 8–

9, pp. 311–320,   2011.  

[22] Adisi-Asl, R., Reinhardt, W., Non-cyclic shakedown/ratcheting boundary determination. Part 

2: Numerical implementation, Int. J. Press. Vess. Piping 88, pp. 321–329, 2011. 

[23] Martin, M., Rice, D., A Hybrid Procedure for Ratchet Boundary Prediction, ASME Pressure 

Vessels and Piping Conference Volume 1: Codes and Standards, pp. 81–88, 2009. 

[24] Spiliopoulos, K.V., Panagiotou, K.D., A direct method to predict cyclic steady states of 

elastoplastic structures, Comp. Methods Appl. Mech. Engrg. 223-224, pp. 186-198, 2012. 

[25] Spiliopoulos, K.V., Panagiotou, K.D., A residual stress decomposition method for the 

shakedown analysis of structures. Comp. Methods Appl. Mech. Engrg. 276, pp. 410-430, 2014. 

[26] Jappy, A., Mackenzie, D., Chen, H., A Fully Implicit, Lower Bound, Multi-Axial Solution 

Strategy for Direct Ratchet Boundary Evaluation: Theoretical Development, J. Pressure Vessel 

Technol, 135(5), 2013. 

[27] Jappy, A., Mackenzie, D., Chen, H., A Fully Implicit, Lower Bound, Multi-Axial Solution 

Strategy for Direct Ratchet Boundary Evaluation: Implementation and Comparison, J. Pressure 

Vessel Technol, 136(1), 2013. 

[28] Abou-Hanna, J., McGreevy, T.E., A simplified ratcheting limit method based on limit 

analysis using modified yield surface, Int. J. Press. Vess. Piping 88, pp. 11–18, 2011.  



23 

 

[29] Gokhfeld, D. A., Cherniavsky, O.F., Limit Analysis of Structures at Thermal Cycling, 

Suthoff & Nordhoff, Alphen aan den Rijn, The Netherlands, 1980. 

[30] Muscat, M., Hamilton, R., Boyle J.T., Shakedown analysis for complex loading using 

superposition. J. Strain analysis, 37 (5), pp. 399-412, 2002. 

[31] Muscat, M., Mackenzie, D., Hamilton, R., 2003 Evaluating shakedown under proportional 

loading by non-linear static analysis. Computers and Structures, 81 (17), pp. 1727-1737 

[32] Abdalla, H.F., Megahed, M.M., Younan, M.Y.A., 2007. A simplified technique for 

shakedown limit load determination. Nuclear Engineering and Design 237, pp. 1231-1240. 

[33] Abdalla, H.F., Megahed, M.M., Younan, M.Y., 2009, Comparison of pipe bend ratchetting/ 

shakedown test results with the shakedown boundary determined via a simplified technique, In: 

Proceedings of the ASME – PVP Division Conference, Prague, Czech Republic. 

[34] Koiter W. T. General theorems for elastic plastic solids. Progress in solid mechanics J.N. 

Sneddon and R. Hill, eds. North Holland, Amsterdam, 1; pp. 167-221.,1960. 

[35] Chen H.F., Ure J., Tipping D., Calculation of a lower bound ratchet limit part 1 – Theory, 

numerical implementation and verification, European Journal of Mechanics - A/Solids, 37, pp. 

pp. 361-368 , 2013.  

[36] Lytwyn, M., Chen, H.F., Martin, M., Ratchet analysis of structures under a generalised 

cyclic load history, ASME PVP Conference, PVP2014-28326, Anaheim, California, USA, 2014. 

[37] ABAQUS, Dassault Systemes, Version 6.11, 2011. 

[38] Chen H.F., Ponter A.R.S., The 3-D shakedown and limit analysis using the linear matching 

method, International Journal of Pressure Vessel and Piping, 78, 443-451, 2002. 

[39] Okamoto, A., Nishiguchi, I., and Aoki, M., New secondary stress evaluation criteria suitable 

for finite element analyses, ICPVT-9, Sydney, Vol. 2, pp. 613-620, 2000. 

[40] Kalnins, A. Shakedown and ratcheting directives of ASME BP&V code and their execution. 

439, ASME PVP Conference, Vancouver, Canada, pp. 47-55, 2002. 

 

 

 

 

 

 

 



Table. 1 – Reference elastic load paths used for the Bree example. 

Load Case ッ飼【層宋宋 岫ソ察岻 ッ時皿 岫捌皿珊岻 

1 0 ў 2.4 0 ў 0.945 購超 

2 0 ў 4.2 0 ў 0.83 購超 

3 0 ў 4.5 0 ў 0.62 購超 

 



Table. 2 – Reference elastic load paths used for the holed plate problem. 

 

Load Case ッ飼【層宋宋 岫ソ察岻 ッ時皿 岫捌皿珊岻 

1 0 ў 3.0 0 ў 0.65 購超 

2 0 ў 2.5 0 ў 0.4 購超 

3 0 ў 4.0 0 ў 0.33 購超 

 

 



 

Fig. 1 - Typical plastic strain evolution behaviour for strict shakedown, global shakedown and 

ratcheting.  

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 - Flow chart illustration of the LMM DSCA numerical procedure. 
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 (where ッ貢沈珍追 岫捲┸ 建津岻陳  refers to load instance 建津 and m =  1....M DSCA sub-cycles) 
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Input linear stress fields 膏購葡沈珍ッ岫捲┸ 建津岻  
where n= 1.. N load instances 



 

 

Fig. 3 - Load interaction diagram illustrating each failure regime for the classic Bree (Type ii) & 

modified problem (Type i)), as well as the LMM numerical load scaling paths.  
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Fig. 4 - Flow chart of the novel LMM generalised ratchet analysis procedure (using e = 1%). 
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Fig. 5 i) Plane stress Bree model ii) applied cyclic thermo-mechanical load history and iii) in load 

domain. 
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Fig. 6 - Bree problem ratchet boundaries for proportional loading compared to analytical solution 

of Bradford [11], alongside original Bree limit for constant loading and the relevant ASME III 

Code 3Sm limits for each respective loading regime.  
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Fig. 7 – Generalised LMM load multiplier convergence characteristics for various amounts of 

fixed increments per sub-cycle (relative to reference Load Case 3).  
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Fig. 8 – Maximum equivalent ratchet strain vs. normalised load multiplier.  
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Fig. 9 – Maximum equivalent (plastic/total) strain ranges vs. normalised load multiplier.  
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Fig. 10 - i) Holed plate problem geometry and ii) Quarter model FE mesh.  
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Fig. 11 - Holed plate ratchet boundaries for proportional loading and original Bree type loading 

(including locations for individual CCA load case calculations used to verify ratchet limit).  
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Fig. 12 – Load multiplier convergence characteristics for the holed plate problem.  
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Fig. 13 – Maximum equivalent ratchet strain vs. normalised load multiplier for the holed plate.  
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Fig. 14 – Maximum equivalent (plastic/total) strain ranges vs. normalised load multiplier.  
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Fig. 15 - Magnitude of plastic strain results from sample CCA load cases 1, 2, 3 & 4 (from Fig. 

11) of the holed plate ratchet boundary, illustrating ratcheting at points 2 & 4 and strict 

shakedown at 1 & 3. 
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Fig. 16 – Contours of equivalent ratchet strain at various levels of loading; at i) そ = そR
 and ii) そ = 

1.67.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i)  そ = そR
 ii) そ = 1.67 



 

    

           

Fig. 17 - Contours of the equivalent plastic strain range at various levels of loading; at i) そ = そR 

and ii) そ = 1.67. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i)  そ = そR
 ii) そ = 1.67 


