1,583 research outputs found

    Universality of political corruption networks

    Get PDF
    Corruption crimes demand highly coordinated actions among criminal agents to succeed. But research dedicated to corruption networks is still in its infancy and indeed little is known about the properties of these networks. Here we present a comprehensive investigation of corruption networks related to political scandals in Spain and Brazil over nearly three decades. We show that corruption networks of both countries share universal structural and dynamical properties, including similar degree distributions, clustering and assortativity coefcients, modular structure, and a growth process that is marked by the coalescence of network components due to a few recidivist criminals. We propose a simple model that not only reproduces these empirical properties but reveals also that corruption networks operate near a critical recidivism rate below which the network is entirely fragmented and above which it is overly connected. Our research thus indicates that actions focused on decreasing corruption recidivism may substantially mitigate this type of organized crime

    The VITAH Trial-Vitamin D Supplementation and Cardiac Autonomic Tone in Patients with End-Stage Kidney Disease on Hemodialysis: A Blinded, Randomized Controlled Trial

    Get PDF
    End-stage kidney disease (ESKD) patients are at increased cardiovascular risk. Vitamin D deficiency is associated with depressed heart rate variability (HRV), a risk factor depicting poor cardiac autonomic tone and risk of cardiovascular death. Vitamin D deficiency and depressed HRV are highly prevalent in the ESKD population. We aimed to determine the effects of oral vitamin D supplementation on HRV ((low frequency (LF) to high frequency (HF) spectral ratio (LF:HF)) in ESKD patients on hemodialysis. Fifty-six subjects with ESKD requiring hemodialysis were recruited from January 2013-March 2015 and randomized 1:1 to either conventional (0.25 mcg alfacalcidol plus placebo 3×/week) or intensive (0.25 mcg alfacalcidol 3×/week plus 50,000 international units (IU) ergocalciferol 1×/week) vitamin D for six weeks. The primary outcome was the change in LF:HF. There was no difference in LF:HF from baseline to six weeks for either vitamin D treatment (conventional: p = 0.9 vs. baseline; intensive: p = 0.07 vs. baseline). However, participants who remained vitamin D-deficient (25-hydroxyvitamin D < 20 ng/mL) after treatment demonstrated an increase in LF:HF (conventional: n = 13, ∆LF:HF: 0.20 ± 0.06, p < 0.001 vs. insufficient and sufficient vitamin D groups; intensive: n = 8: ∆LF:HF: 0.15 ± 0.06, p < 0.001 vs. sufficient vitamin D group). Overall, six weeks of conventional or intensive vitamin D only augmented LF:HF in ESKD subjects who remained vitamin D-deficient after treatment. Our findings potentially suggest that while activated vitamin D, with or without additional nutritional vitamin D, does not appear to improve cardiac autonomic tone in hemodialysis patients with insufficient or sufficient baseline vitamin D levels, supplementation in patients with severe vitamin D deficiency may improve cardiac autonomic tone in this higher risk sub-population of ESKD. TRIAL REGISTRATION: ClinicalTrials.gov, NCT01774812

    Retail investor attention and IPO valuation

    Get PDF
    Given restrictions placed on communication with prospective investors, retail investor attention can help firms/underwriters with the task of initially valuing an IPO. Using Google search volume to proxy for retail investor attention, we find that the presence of and an increase in retail attention following initial filing but prior to initial pricing are positively related to initial valuations. Our results are robust to alternative matching methods to identify our matched sample of non-IPO firms and to including several controls for institutional demand. We conclude that retail investor attention plays a critical role in the early stages of IPO valuation

    Machine learning partners in criminal networks

    Get PDF
    Recent research has shown that criminal networks have complex organizational structures, but whether this can be used to predict static and dynamic properties of criminal networks remains little explored. Here, by combining graph representation learning and machine learning methods, we show that structural properties of political corruption, police intelligence, and money laundering networks can be used to recover missing criminal partnerships, distinguish among diferent types of criminal and legal associations, as well as predict the total amount of money exchanged among criminal agents, all with outstanding accuracy. We also show that our approach can anticipate future criminal associations during the dynamic growth of corruption networks with signifcant accuracy. Thus, similar to evidence found at crime scenes, we conclude that structural patterns of criminal networks carry crucial information about illegal activities, which allows machine learning methods to predict missing information and even anticipate future criminal behavior

    Deep Learning Criminal Networks

    Get PDF
    Recent advances in deep learning methods have enabled researchers to develop and apply algorithms for the analysis and modeling of complex networks. These advances have sparked a surge of interest at the interface between network science and machine learning. Despite this, the use of machine learning methods to investigate criminal networks remains surprisingly scarce. Here, we explore the potential of graph convolutional networks to learn patterns among networked criminals and to predict various properties of criminal networks. Using empirical data from political corruption, criminal police intelligence, and criminal financial networks, we develop a series of deep learning models based on the GraphSAGE framework that are capable to recover missing criminal partnerships, distinguish among types of associations, predict the amount of money exchanged among criminal agents, and even anticipate partnerships and recidivism of criminals during the growth dynamics of corruption networks, all with impressive accuracy. Our deep learning models significantly outperform previous shallow learning approaches and produce high-quality embeddings for node and edge properties. Moreover, these models inherit all the advantages of the GraphSAGE framework, including the generalization to unseen nodes and scaling up to large graph structures.Comment: 14 two-column pages, 5 figure

    Assessing the quasi-static conditions for shearing in granular media within the critical state soil mechanics framework

    Get PDF
    There has been a marked increase in the use of the discrete element method (DEM) in geomechanics in recent years. The way in which DEM simulations are set up can have a noticeable influence on the observed response. Here the conditions for quasi-static shearing in DEM simulations of granular materials were studied within the critical-state framework of soil behaviour. Thirty two constant-p' triaxial simulations were carried out from which critical-state relationships were defined in the void ratio-mean effective stress and deviator fabric-mechanical coordination number planes. Clear trends were observed in the void ratio, coordination number and deviatoric fabric at the critical state as the inertial number, I, was varied. The critical state relationships are aligned along distinct loci for each value of I. The critical state framework is used to show that there is an upper bound to the I values below which the simulation is quasi-static and the observed behaviour is independent of strain rate. The parameter I is shown to be a useful measure to assess the quality of quasi-static DEM simulations

    The stress of starvation: glucocorticoid restraint of beta cell development

    Get PDF
    Developmental insults during gestation, such as under-nutrition, are known to restrict the number of beta cells that form in the fetal pancreas and are maintained in adulthood, leading to increased risk of type 2 diabetes. There are now substantial data indicating that glucocorticoids mediate this effect of under-nutrition on beta cell mass and that even at physiological levels they restrain fetal beta cell development in utero. There are emerging clues that this occurs downstream of endocrine commitment by neurogenin 3 but prior to terminal beta cell differentiation. Deciphering the precise mechanism will be important as it might unveil new pathways by which to manipulate beta cell mass that could be exploited as novel therapies for patients with diabetes

    TGF-b2 induction regulates invasiveness of theileria-transformed leukocytes and disease susceptibility

    Get PDF
    Theileria parasites invade and transform bovine leukocytes causing either East Coast fever (T. parva), or tropical theileriosis (T. annulata). Susceptible animals usually die within weeks of infection, but indigenous infected cattle show markedly reduced pathology, suggesting that host genetic factors may cause disease susceptibility. Attenuated live vaccines are widely used to control tropical theileriosis and attenuation is associated with reduced invasiveness of infected macrophages in vitro. Disease pathogenesis is therefore linked to aggressive invasiveness, rather than uncontrolled proliferation of Theileria-infected leukocytes. We show that the invasive potential of Theileria-transformed leukocytes involves TGF-b signalling. Attenuated live vaccine lines express reduced TGF-b2 and their invasiveness can be rescued with exogenous TGF-b. Importantly, infected macrophages from disease susceptible Holstein-Friesian (HF) cows express more TGF-b2 and traverse Matrigel with great efficiency compared to those from disease-resistant Sahiwal cattle. Thus, TGF-b2 levels correlate with disease susceptibility. Using fluorescence and time-lapse video microscopy we show that Theileria-infected, disease-susceptible HF macrophages exhibit increased actin dynamics in their lamellipodia and podosomal adhesion structures and develop more membrane blebs. TGF-b2-associated invasiveness in HF macrophages has a transcription-independent element that relies on cytoskeleton remodelling via activation of Rho kinase (ROCK). We propose that a TGF-b autocrine loop confers an amoeboid-like motility on Theileria-infected leukocytes, which combines with MMP-dependent motility to drive invasiveness and virulence
    • …
    corecore