10 research outputs found

    High-Performance Multi-Mode Ptychography Reconstruction on Distributed GPUs

    Full text link
    Ptychography is an emerging imaging technique that is able to provide wavelength-limited spatial resolution from specimen with extended lateral dimensions. As a scanning microscopy method, a typical two-dimensional image requires a number of data frames. As a diffraction-based imaging technique, the real-space image has to be recovered through iterative reconstruction algorithms. Due to these two inherent aspects, a ptychographic reconstruction is generally a computation-intensive and time-consuming process, which limits the throughput of this method. We report an accelerated version of the multi-mode difference map algorithm for ptychography reconstruction using multiple distributed GPUs. This approach leverages available scientific computing packages in Python, including mpi4py and PyCUDA, with the core computation functions implemented in CUDA C. We find that interestingly even with MPI collective communications, the weak scaling in the number of GPU nodes can still remain nearly constant. Most importantly, for realistic diffraction measurements, we observe a speedup ranging from a factor of 1010 to 10310^3 depending on the data size, which reduces the reconstruction time remarkably from hours to typically about 1 minute and is thus critical for real-time data processing and visualization.Comment: work presented in NYSDS 201

    Genome wide association study of apparent treatment resistant hypertension in the CHARGE consortium: the CHARGE pharmacogenetics working group

    Get PDF
    Background: Only a handful of genetic discovery efforts in apparent treatment-resistant hypertension (aTRH) have been described. Methods: We conducted a case–control genome-wide association study of aTRH among persons treated for hypertension, using data from 10 cohorts of European ancestry (EA) and 5 cohorts of African ancestry (AA). Cases were treated with 3 different antihypertensive medication classes and had blood pressure (BP) above goal (systolic BP ≥ 140 mm Hg and/or diastolic BP ≥ 90 mm Hg) or 4 or more medication classes regardless of BP control (nEA = 931, nAA = 228). Both a normotensive control group and a treatment-responsive control group were considered in separate analyses. Normotensive controls were untreated (nEA = 14,210, nAA = 2,480) and had systolic BP/diastolic BP < 140/90 mm Hg. Treatment-responsive controls (nEA = 5,266, nAA = 1,817) had BP at goal (<140/90 mm Hg), while treated with one antihypertensive medication class. Individual cohorts used logistic regression with adjustment for age, sex, study site, and principal components for ancestry to examine the association of single-nucleotide polymorphisms with case–control status. Inverse variance-weighted fixed-effects meta-analyses were carried out using METAL. Results: The known hypertension locus, CASZ1, was a top finding among EAs (P = 1.1 × 10−8) and in the race-combined analysis (P = 1.5 × 10−9) using the normotensive control group (rs12046278, odds ratio = 0.71 (95% confidence interval: 0.6–0.8)). Single-nucleotide polymorphisms in this locus were robustly replicated in the Million Veterans Program (MVP) study in consideration of a treatment-responsive control group. There were no statistically significant findings for the discovery analyses including treatment-responsive controls. Conclusion: This genomic discovery effort for aTRH identified CASZ1 as an aTRH risk locus

    Differential subgenome expression underlies biomass accumulation in allotetraploid Pennisetum giganteum

    No full text
    Abstract Background Pennisetum giganteum (AABB, 2n = 4x = 28) is a C4 plant in the genus Pennisetum with origin in Africa but currently also grown in Asia and America. It is a crucial forage and potential energy grass with significant advantages in yield, stress resistance, and environmental adaptation. However, the mechanisms underlying these advantageous traits remain largely unexplored. Here, we present a high-quality genome assembly of the allotetraploid P. giganteum aiming at providing insights into biomass accumulation. Results Our assembly has a genome size 2.03 Gb and contig N50 of 88.47 Mb that was further divided into A and B subgenomes. Genome evolution analysis revealed the evolutionary relationships across the Panicoideae subfamily lineages and identified numerous genome rearrangements that had occurred in P. giganteum. Comparative genomic analysis showed functional differentiation between the subgenomes. Transcriptome analysis found no subgenome dominance at the overall gene expression level; however, differentially expressed homoeologous genes and homoeolog-specific expressed genes between the two subgenomes were identified, suggesting that complementary effects between the A and B subgenomes contributed to biomass accumulation of P. giganteum. Besides, C4 photosynthesis-related genes were significantly expanded in P. giganteum and their sequences and expression patterns were highly conserved between the two subgenomes, implying that both subgenomes contributed greatly and almost equally to the highly efficient C4 photosynthesis in P. giganteum. We also identified key candidate genes in the C4 photosynthesis pathway that showed sustained high expression across all developmental stages of P. giganteum. Conclusions Our study provides important genomic resources for elucidating the genetic basis of advantageous traits in polyploid species, and facilitates further functional genomics research and genetic improvement of P. giganteum

    CEPC Conceptual Design Report: Volume 2 - Physics & Detector

    No full text
    The Circular Electron Positron Collider (CEPC) is a large international scientific facility proposed by the Chinese particle physics community to explore the Higgs boson and provide critical tests of the underlying fundamental physics principles of the Standard Model that might reveal new physics. The CEPC, to be hosted in China in a circular underground tunnel of approximately 100 km in circumference, is designed to operate as a Higgs factory producing electron-positron collisions with a center-of-mass energy of 240 GeV. The collider will also operate at around 91.2 GeV, as a Z factory, and at the WW production threshold (around 160 GeV). The CEPC will produce close to one trillion Z bosons, 100 million W bosons and over one million Higgs bosons. The vast amount of bottom quarks, charm quarks and tau-leptons produced in the decays of the Z bosons also makes the CEPC an effective B-factory and tau-charm factory. The CEPC will have two interaction points where two large detectors will be located. This document is the second volume of the CEPC Conceptual Design Report (CDR). It presents the physics case for the CEPC, describes conceptual designs of possible detectors and their technological options, highlights the expected detector and physics performance, and discusses future plans for detector R&D and physics investigations. The final CEPC detectors will be proposed and built by international collaborations but they are likely to be composed of the detector technologies included in the conceptual designs described in this document. A separate volume, Volume I, recently released, describes the design of the CEPC accelerator complex, its associated civil engineering, and strategic alternative scenarios

    CEPC Conceptual Design Report: Volume 2 - Physics & Detector

    No full text
    The Circular Electron Positron Collider (CEPC) is a large international scientific facility proposed by the Chinese particle physics community to explore the Higgs boson and provide critical tests of the underlying fundamental physics principles of the Standard Model that might reveal new physics. The CEPC, to be hosted in China in a circular underground tunnel of approximately 100 km in circumference, is designed to operate as a Higgs factory producing electron-positron collisions with a center-of-mass energy of 240 GeV. The collider will also operate at around 91.2 GeV, as a Z factory, and at the WW production threshold (around 160 GeV). The CEPC will produce close to one trillion Z bosons, 100 million W bosons and over one million Higgs bosons. The vast amount of bottom quarks, charm quarks and tau-leptons produced in the decays of the Z bosons also makes the CEPC an effective B-factory and tau-charm factory. The CEPC will have two interaction points where two large detectors will be located. This document is the second volume of the CEPC Conceptual Design Report (CDR). It presents the physics case for the CEPC, describes conceptual designs of possible detectors and their technological options, highlights the expected detector and physics performance, and discusses future plans for detector R&D and physics investigations. The final CEPC detectors will be proposed and built by international collaborations but they are likely to be composed of the detector technologies included in the conceptual designs described in this document. A separate volume, Volume I, recently released, describes the design of the CEPC accelerator complex, its associated civil engineering, and strategic alternative scenarios

    CEPC Conceptual Design Report: Volume 2 - Physics & Detector

    No full text
    The Circular Electron Positron Collider (CEPC) is a large international scientific facility proposed by the Chinese particle physics community to explore the Higgs boson and provide critical tests of the underlying fundamental physics principles of the Standard Model that might reveal new physics. The CEPC, to be hosted in China in a circular underground tunnel of approximately 100 km in circumference, is designed to operate as a Higgs factory producing electron-positron collisions with a center-of-mass energy of 240 GeV. The collider will also operate at around 91.2 GeV, as a Z factory, and at the WW production threshold (around 160 GeV). The CEPC will produce close to one trillion Z bosons, 100 million W bosons and over one million Higgs bosons. The vast amount of bottom quarks, charm quarks and tau-leptons produced in the decays of the Z bosons also makes the CEPC an effective B-factory and tau-charm factory. The CEPC will have two interaction points where two large detectors will be located. This document is the second volume of the CEPC Conceptual Design Report (CDR). It presents the physics case for the CEPC, describes conceptual designs of possible detectors and their technological options, highlights the expected detector and physics performance, and discusses future plans for detector R&D and physics investigations. The final CEPC detectors will be proposed and built by international collaborations but they are likely to be composed of the detector technologies included in the conceptual designs described in this document. A separate volume, Volume I, recently released, describes the design of the CEPC accelerator complex, its associated civil engineering, and strategic alternative scenarios
    corecore