12 research outputs found

    Integration of proteomic and metabolomic analyses: New insights for mapping informal workers exposed to potentially toxic elements

    Get PDF
    Occupational exposure to potentially toxic elements (PTEs) is a concerning reality of informal workers engaged in the jewelry production chain that can lead to adverse health effects. In this study, untargeted proteomic and metabolomic analyses were employed to assess the impact of these exposures on informal workers' exposome in Limeira city, São Paulo state, Brazil. PTE levels (Cr, Mn, Ni, Cu, Zn, As, Cd, Sn, Sb, Hg, and Pb) were determined in blood, proteomic analyses were performed for saliva samples (n = 26), and metabolomic analyses in plasma (n = 145) using ultra-high performance liquid chromatography (UHPLC) coupled with quadrupole-time-of-flight (Q-TOF) mass spectrometry. Blood PTE levels of workers, controls, and their family members were determined by inductively coupled plasma-mass spectrometry (ICP-MS). High concentration levels of Sn and Cu were detected in welders' blood (p < 0.001). Statistical analyses were performed using MetaboAnalyst 4.0. The results showed that 26 proteins were upregulated, and 14 proteins downregulated on the welder group, and thirty of these proteins were also correlated with blood Pb, Cu, Sb, and Sn blood levels in the welder group (p < 0.05). Using gene ontology analysis of these 40 proteins revealed the biological processes related to the upregulated proteins were translational initiation, SRP-dependent co-translational protein targeting to membrane, and viral transcription. A Metabolome-Wide Association Study (MWAS) was performed to search for associations between blood metabolites and exposure groups. A pathway enrichment analysis of significant features from the MWAS was then conducted with Mummichog. A total of 73 metabolomic compounds and 40 proteins up or down-regulated in welders were used to perform a multi-omics analysis, disclosing seven metabolic pathways potentially disturbed by the informal work: valine leucine and isoleucine biosynthesis, valine leucine and isoleucine degradation, arginine and proline metabolism, ABC transporters, central carbon metabolism in cancer, arachidonic acid metabolism and cysteine and methionine metabolism. The majority of the proteins found to be statistically up or downregulated in welders also correlated with at least one blood PTE level, providing insights into the biological responses to PTE exposures in the informal work exposure scenario. These findings shed new light on the effects of occupational activity on workers' exposome, underscoring the harmful effects of PTE

    DataSheet1_Molecular mediators of the association between child obesity and mental health.docx

    No full text
    Biological mechanisms underlying the association between obesity and depression remain unclear. We investigated the role of metabolites and DNA methylation as mediators of the relationship between childhood obesity and subsequent poor mental health in the English Avon Longitudinal Study of Parents and Children. Obesity was defined according to United Kingdom Growth charts at age 7 years and mental health through the Short Mood and Feelings Questionnaire (SMFQ) completed at age 11 years. Metabolites and DNA methylation were measured by nuclear magnetic resonance spectroscopy and Illumina array in blood at the age of 7 years. The associations between obesity and SMFQ score, as continuous count data or using cut-offs to define depressive symptoms (SMFQ >7) or depression (SMFQ >11), were tested using adjusted Poisson and logistic regression. Candidate metabolite mediators were identified through metabolome-wide association scans for obesity and SMFQ score, correcting for false-discovery rate. Candidate DNA methylation mediators were identified through testing the association of putative BMI-associated CpG sites with SMFQ scores, correcting for look-up false-discovery rate. Mediation by candidate molecular markers was tested. Two-sample Mendelian randomization (MR) analyses were additionally applied to test causal associations of metabolites with depression in independent adult samples. 4,018 and 768 children were included for metabolomics and epigenetics analyses, respectively. Obesity at 7 years was associated with a 14% increase in SMFQ score (95% CI: 1.04, 1.25) and greater odds of depression (OR: 1.46 (95% CI: 0.78, 2.38) at 11 years. Natural indirect effects (mediating pathways) between obesity and depression for tyrosine, leucine and conjugated linoleic acid were 1.06 (95% CI: 1.00, 1.13, proportion mediated (PM): 15%), 1.04 (95% CI: 0.99, 1.10, PM: 9.6%) and 1.06 (95% CI: 1.00, 1.12, PM: 13.9%) respectively. In MR analysis, one unit increase in tyrosine was associated with 0.13 higher log odds of depression (p = 0.1). Methylation at cg17128312, located in the FBXW9 gene, had a natural indirect effect of 1.05 (95% CI: 1.01,1.13, PM: 27%) as a mediator of obesity and SMFQ score. Potential biologically plausible mechanisms involving these identified molecular features include neurotransmitter regulation, inflammation, and gut microbiome modulation. These results require replication in further observational and mechanistic studies.</p

    Monitoring of air pollution levels related to Charilaos Trikoupis Bridge

    No full text
    Charilaos Trikoupis bridge is the longest cable bridge in Europe that connects Western Greece with the rest of the country. In this study, six air pollution monitoring campaigns (including major regulated air pollutants) were carried out from 2013 to 2015 at both sides of the bridge, located in the urban areas of Rio and Antirrio respectively. Pollution data were statistically analyzed and air quality was characterized using US and European air quality indices. From the overall campaign, it was found that air pollution levels were below the respective regulatory thresholds, but once at the site of Antirrio (26.4 and 52.2 μg/m 3 for PM 2.5 and ΡΜ 10 , respectively) during the 2nd winter period. Daily average PM 10 and PM 2.5 levels from two monitoring sites were well correlated to gaseous pollutant (CO, NO, NO 2 , NO x and SO 2 ) levels, meteorological parameters and factor scores from Positive Matrix Factorization during the 3-year period. Moreover, the elemental composition of PM 10 and PM 2.5 was used for source apportionment. That analysis revealed that major emission sources were sulfates, mineral dust, biomass burning, sea salt, traffic and shipping emissions for PM 10 and PM 2.5 , for both Rio and Antirrio. Seasonal variation indicates that sulfates, mineral dust and traffic emissions increased during the warm season of the year, while biomass burning become the dominant during the cold season. Overall, the contribution of the Charilaos Trikoupis bridge to the vicinity air pollution is very low. This is the result of the relatively low daily traffic volume (~ 10,000 vehicles per day), the respective traffic fleet composition (~ 81% of the traffic fleet are private vehicles) and the speed limit (80 km/h) which does not favor traffic emissions. In addition, the strong and frequent winds further contribute to the rapid dispersion of the emitted pollutants

    DataSheet2_Molecular mediators of the association between child obesity and mental health.xlsx

    No full text
    Biological mechanisms underlying the association between obesity and depression remain unclear. We investigated the role of metabolites and DNA methylation as mediators of the relationship between childhood obesity and subsequent poor mental health in the English Avon Longitudinal Study of Parents and Children. Obesity was defined according to United Kingdom Growth charts at age 7 years and mental health through the Short Mood and Feelings Questionnaire (SMFQ) completed at age 11 years. Metabolites and DNA methylation were measured by nuclear magnetic resonance spectroscopy and Illumina array in blood at the age of 7 years. The associations between obesity and SMFQ score, as continuous count data or using cut-offs to define depressive symptoms (SMFQ >7) or depression (SMFQ >11), were tested using adjusted Poisson and logistic regression. Candidate metabolite mediators were identified through metabolome-wide association scans for obesity and SMFQ score, correcting for false-discovery rate. Candidate DNA methylation mediators were identified through testing the association of putative BMI-associated CpG sites with SMFQ scores, correcting for look-up false-discovery rate. Mediation by candidate molecular markers was tested. Two-sample Mendelian randomization (MR) analyses were additionally applied to test causal associations of metabolites with depression in independent adult samples. 4,018 and 768 children were included for metabolomics and epigenetics analyses, respectively. Obesity at 7 years was associated with a 14% increase in SMFQ score (95% CI: 1.04, 1.25) and greater odds of depression (OR: 1.46 (95% CI: 0.78, 2.38) at 11 years. Natural indirect effects (mediating pathways) between obesity and depression for tyrosine, leucine and conjugated linoleic acid were 1.06 (95% CI: 1.00, 1.13, proportion mediated (PM): 15%), 1.04 (95% CI: 0.99, 1.10, PM: 9.6%) and 1.06 (95% CI: 1.00, 1.12, PM: 13.9%) respectively. In MR analysis, one unit increase in tyrosine was associated with 0.13 higher log odds of depression (p = 0.1). Methylation at cg17128312, located in the FBXW9 gene, had a natural indirect effect of 1.05 (95% CI: 1.01,1.13, PM: 27%) as a mediator of obesity and SMFQ score. Potential biologically plausible mechanisms involving these identified molecular features include neurotransmitter regulation, inflammation, and gut microbiome modulation. These results require replication in further observational and mechanistic studies.</p

    Cord blood metabolites and rapid postnatal growth as multiple mediators in the prenatal propensity to childhood overweight

    No full text
    Background: The mechanisms underlying childhood overweight and obesity are poorly known. Here, we investigated the direct and indirect effects of different prenatal exposures on offspring rapid postnatal growth and overweight in childhood, mediated through cord blood metabolites. Additionally, rapid postnatal growth was considered a potential mediator on childhood overweight, alone and sequentially to each metabolite. Methods: Within four European birth-cohorts (N = 375 mother-child dyads), information on seven prenatal exposures (maternal education, pre-pregnancy BMI, weight gain and tobacco smoke during pregnancy, age at delivery, parity, and child gestational age), selected as obesogenic according to a-priori knowledge, was collected. Cord blood levels of 31 metabolites, associated with rapid postnatal growth and/or childhood overweight in a previous study, were measured via liquid-chromatography-quadrupole-time-of-flight-mass-spectrometry. Rapid growth at 12 months and childhood overweight (including obesity) between four and eight years were defined with reference to WHO growth charts. Single mediation analysis was performed using the imputation approach and multiple mediation analysis using the extended-imputation approach. Results: Single mediation suggested that the effect of maternal education, pregnancy weight gain, parity, and gestational age on rapid postnatal growth but not on childhood overweight was partly mediated by seven metabolites, including cholestenone, decenoylcarnitine(C10:1), phosphatidylcholine(C34:3), progesterone and three unidentified metabolites; and the effect of gestational age on childhood overweight was mainly mediated by rapid postnatal growth. Multiple mediation suggested that the effect of gestational age on childhood overweight was mainly mediated by rapid postnatal growth and that the mediating role of the metabolites was marginal. Conclusion: Our findings provide evidence of the involvement of in utero metabolism in the propensity to rapid postnatal growth and of rapid postnatal growth in the propensity to childhood overweight. We did not find evidence supporting a mediating role of the studied metabolites alone between the studied prenatal exposures and the propensity to childhood overweight.This work is supported by the Bijzonder Onderzoeksfonds Hasselt University through a PhD fellowship [to RA], by the UKRI Future Leaders Fellowship [MR/S03532X/1, to OR] and by the European Commission Horizon 2020 Grant to the ‘STOP Project’ [Grant ref 774548]. The ENVIRONAGE birth cohort is supported by the European Research Council [ERC-2012-StG.310898], and by funds of the Flemish Scientific Research council [FWO, G.0.733.15.N]. The Piccolipiù cohort was initially supported by the Italian National Center for Disease Prevention and Control (CCM grants years 2010 and 2014) and by the Italian Ministry of Health (art 12 and 12 bis D.lgs 502/92). The Rhea study has been funded by various European grants since 2006 and by the Greek Ministry of Health. INMA data collections were supported by grants from the Instituto de Salud Carlos III, CIBERESP, and the Generalitat de Catalunya-CIRIT. ISGlobal acknowledges support from the Spanish Ministry of Science, Innovation and Universities, “Centro de Excelencia Severo Ochoa 2013-2017”, SEV-2012-0208, and “Secretaria d’Universitats i Recerca del Departament d’Economia i Coneixement de la Generalitat de Catalunya” (2017SGR595)

    Determinants of accelerated metabolomic and epigenetic aging in a UK cohort

    No full text
    Abstract Markers of biological aging have potential utility in primary care and public health. We developed a model of age based on untargeted metabolic profiling across multiple platforms, including nuclear magnetic resonance spectroscopy and liquid chromatography–mass spectrometry in urine and serum, within a large sample (N = 2,239) from the UK Airwave cohort. We validated a subset of model predictors in a Finnish cohort including repeat measurements from 2,144 individuals. We investigated the determinants of accelerated aging, including lifestyle and psychological risk factors for premature mortality. The metabolomic age model was well correlated with chronological age (mean r = 0.86 across independent test sets). Increased metabolomic age acceleration (mAA) was associated after false discovery rate (FDR) correction with overweight/obesity, diabetes, heavy alcohol use and depression. DNA methylation age acceleration measures were uncorrelated with mAA. Increased DNA methylation phenotypic age acceleration (N = 1,110) was associated after FDR correction with heavy alcohol use, hypertension and low income. In conclusion, metabolomics is a promising approach for the assessment of biological age and appears complementary to established epigenetic clocks
    corecore