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Occupational exposure to potentially toxic elements (PTEs) is a concerning reality

of informal workers engaged in the jewelry production chain that can lead to

adverse health e�ects. In this study, untargeted proteomic and metabolomic analyses

were employed to assess the impact of these exposures on informal workers’

exposome in Limeira city, São Paulo state, Brazil. PTE levels (Cr, Mn, Ni, Cu,

Zn, As, Cd, Sn, Sb, Hg, and Pb) were determined in blood, proteomic analyses

were performed for saliva samples (n = 26), and metabolomic analyses in plasma

(n = 145) using ultra-high performance liquid chromatography (UHPLC) coupled

with quadrupole-time-of-flight (Q-TOF) mass spectrometry. Blood PTE levels of

workers, controls, and their family members were determined by inductively coupled

plasma-mass spectrometry (ICP-MS). High concentration levels of Sn and Cu were

detected in welders’ blood (p < 0.001). Statistical analyses were performed using

MetaboAnalyst 4.0. The results showed that 26 proteins were upregulated, and

14 proteins downregulated on the welder group, and thirty of these proteins

were also correlated with blood Pb, Cu, Sb, and Sn blood levels in the welder

group (p < 0.05). Using gene ontology analysis of these 40 proteins revealed

the biological processes related to the upregulated proteins were translational

initiation, SRP-dependent co-translational protein targeting to membrane, and viral

transcription. A Metabolome-Wide Association Study (MWAS) was performed to

search for associations between blood metabolites and exposure groups. A pathway

enrichment analysis of significant features from the MWAS was then conducted

with Mummichog. A total of 73 metabolomic compounds and 40 proteins up

or down-regulated in welders were used to perform a multi-omics analysis,

disclosing seven metabolic pathways potentially disturbed by the informal work:

valine leucine and isoleucine biosynthesis, valine leucine and isoleucine degradation,

arginine and proline metabolism, ABC transporters, central carbon metabolism in

cancer, arachidonic acid metabolism and cysteine and methionine metabolism.

The majority of the proteins found to be statistically up or downregulated in

welders also correlated with at least one blood PTE level, providing insights into the
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biological responses to PTE exposures in the informal work exposure scenario. These

findings shed new light on the e�ects of occupational activity on workers’ exposome,

underscoring the harmful e�ects of PTE.

KEYWORDS

proteomics, metabolomics, exposome, potentially toxic elements, informal work,

occupational exposure, multi-omics

1. Introduction

Documented health effects of potentially toxic elements (PTEs)
exposure include neurotoxicity, genotoxicity, carcinogenicity (1, 2),
as well as enzyme inhibition (3, 4), harming of the central nervous
system (CNS), energy metabolism, ion transporters, cardiovascular
system, and mitochondrial dysfunction (5). Industrial activities,
agrochemicals, and petroleum-derived products can all be sources
of PTE exposure (6, 7). Some occupational exposure environments
can be especially concerning, as they are found in a domiciliary
setting and involve handling PTEs (8). Unfortunately, working under
these conditions has been reported in many places around the world.
Cottage industries in Africa are considered a public health problem,
exposing entire families to high Pb levels (9, 10). Studies have
reported concerning levels of Pb among jewelry workers in India and
Pakistan (11–14), while in Brazil this scenario can be found in the
Limeira municipality fashion jewelry production chain.

Welding and assembly are among the most frequently used
processes in fashion jewelry production and represent major
exposure sources of PTEs. Home-based and informal work in the
fashion jewelry industry can lead to exposure environments that pose
high risk to human health. During the assembly process, a fine-
grained powder ofmaterial is released from the piece, and the welding
process typically involves torches, cooking gas, welding powders
(flux), wire and acid solutions (15, 16). The welding powder spreads
throughout the household environment and the fumes produced can
expose everyone in the vicinity, since personal protection equipment
(PPE) is rarely used (16, 17). More sobering is the fact that this
work activity sometimes takes place in the same room where food
is prepared with children sharing the workspace (15, 16, 18, 19).

X-ray fluorescence analyses of the surface layer of the jewelry
in these local production chains showed lead and cadmium
concentrations that exceeded levels permitted by Brazilian legislation,
besides high levels of other Potentially Toxic Elements (PTEs)
unregulated by Brazilian law (nickel and tin). Cadmium, lead, and
tin were also found in high concentrations in the welding powder
used (15, 20). Values were also found to be above the Minimal
Risk Level for chronic inhalation (MRL) for the elements Mn, Ni
and Cd and environmental limits for Mn, Ni, Zn, Cd and Pb for
levels determined on the welders’ breathing zone. Furthermore, the
measured concentrations of Cu, Zn, Cd, and Pb exceeded even the
occupational limits (16).

Environmental and occupational exposures play an important
role in an individual’s exposome, constituting an external specific
factor (21, 22). According to the top-down approach, designed to
enable exposome studies, the toxic effects of external exposures,
regardless of their starting point, are mediated by chemical
compounds that change molecules, cells, and physiologic processes

in the body (23, 24). Therefore, using omics technologies such as
proteomics and metabolomics, it is now possible to assess both
environmental compounds, found in very low levels of plasma, and
the potential metabolic effects that precede a health diagnosis (21, 25).

Previous studies have used proteomics (26–29) and
metabolomics (30–35) to investigate metabolic changes related
to occupational PTE exposure. The present study aimed to apply
proteomic and metabolomic analysis to access the impact of PTEs
exposure on informal workers exposome from the fashion jewelry
production chain in the city of Limeira, Sao Paulo state, Brazil.

2. Materials and methods

2.1. Study population

The study population was difficult to access. We relied on the
assistance of the Limeira’s Municipal Department of Health and
Family Health Care Centers of the Brazilian Public Health System.
The first contact with the families was facilitated by the local
community health worker, who provided access to the participants
by the researchers. A relationship of trust was built with the informal
workers. The workers were then invited to take part in the study
and subjects who agreed to participate signed the informed written
consent form. Participants included in the exposure group were the
workers engaged in the fashion jewelry production chain, irrespective
of the activity they performed (assembling or welding), together
with their relatives. The workers’ relatives were also included in the
wider study population, since they lived in the same environment
where the work with jewelry was performed. Forty-six exposed
families were invited, and 38 agreed to participate in the study.
The control families invited lived near the exposed participants, but
at least four houses away on the same street. For inclusion in the
control group, no members of the family worked with jewelry or
had known contact with chemical substances at work. Thirty-three
control families were invited to take part in the study and 30 agreed
to participate. However, between the time of scheduling and sample
collection, 14 families dropped out. The final sample comprised 29
exposed families (total 112 participants including informal workers
and relatives) and 23 control families including 53 participants with
no exposure to chemical substances (16, 36). The biological samples
(blood and saliva) were collected between July and August 2017. The
study was approved by the institutional Ethics Committees of the
School of Public Health of the University of Sao Paulo (Protocol
Number 41965115.0.0000.5421) and the Federal University of São
Paulo (Permit number 1459/2018), and all participants signed an
informed consent term agreeing to take part in the study.

Frontiers in PublicHealth 02 frontiersin.org

https://doi.org/10.3389/fpubh.2022.899638
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Araujo et al. 10.3389/fpubh.2022.899638

2.2. Sample collection and preparation

All biological samples were collected on the same day and after 4-
hours fasting. The blood collection was performed by a trained nurse
after the workers shifts for the exposed group and during the day
for the control group. Blood samples were collected in heparinized
tubes free of trace elements for PTE determination and in lithium
heparin and separating gel for metabolomic tests (Vacutainer

R©
).

Saliva samples (2mL) were collected using an adapted sputum
method (37). Prior to collection, subjects lips were cleaned with gauze
and water to avoid sample contamination.

After collection, saliva samples were homogenized in a universal
collection tube (polypropylene) by adding 50 µL of formic acid (10
mmol L−1) and aliquoted (200 µL each aliquot) on the same day
before storage at −80◦C until processing and analysis. Metabolomic
blood samples were also processed before storage. In this case,
the tubes were centrifuged for 10min at 4◦C 2000 × g and the
plasma aliquoted.

Blood samples for PTE determination were stored at−80◦C until
the chemical analysis. Before analysis, samples were diluted 1:50
in a 15mL polypropylene Falcon

R©
tube (Becton Dickinson) with

a solution containing 0.01% (v/v) Triton
R©

X-100, 0.5% (v/v) nitric
acid and 10 µgL−1 of each respective internal standard (Yttrium).
High purity de-ionized water (resistivity 18.2 M� cm−1) was used
for preparing the samples and solutions (38).

2.3. Environmental exposure biomarkers

A total of 6mL of whole blood were collected in heparinized tubes
free of trace elements (Vacutainer R©) to determine PTEs (Cr, Mn, Ni,
Cu, Zn, As, Cd, Sn, Sb, Hg, and Pb). Trace elements were determined
by an inductively coupled plasma-mass spectrometer (ICP-MS) at
the Federal University of ABC (16). The ICP-MS is equipped with
a reaction cell (ICP-MS 7900, Hachioji, Japan) and operated with
high-purity argon (99.999%, White, Brazil) and helium (99.999%,
White, Brazil) as the reaction gas. For quality control, the method
was validated by analyzing certified reference material (CRM) for
each batch of samples (Seronorm R© TE Whole Blood Level II –
Stasjonsveien). The limits of detection (LOD) were 0.1597, 0.036,
0.164, 0.534, 1.060, 0.096, 0.001, 0.017, 0.005, 0.1507, and 0.002 µg
L−1 for Cr, Mn, Ni, Cu, Zn, As, Cd, Sn, Sb, Hg, and Pb, respectively.
The CRM recovery for all elements was 80–120%.

2.4. Saliva digestion- Proteomic
measurements

Proteins were extracted based on the extraction protocol
proposed by Friedman (39). First, 900 µL of chloroform 450 µL of
methanol and 375µL of water were added to saliva aliquot of 60 uL to
precipitate the proteins, and their concentration was then determined
using a BCA test kit (BioRad, USA) (40). This process was repeated
until to achieve 100 µg of extracted proteins, which then were
enzymatically digested (as described in Supplementary material) and
analyzed with a nanoACQUITY UPLC R© System coupled with a
mass spectrometry system (maXisTM 3G Q-TOF), in single shotgun
runs. MS/MS spectra were analyzed using the software PEAKS

studio 8.5 (Bioinformatics Solutions Inc., Canada) and the Uniprot
(February 2019) database was used for Homo sapiens taxonomy
(20,415 entries). Saliva samples were processed by a peak list (MGF
format) and analyzed together for protein identification with a False
Discovery Rate (FDR) cut-off of 1%, protein score identification
(−10l gP) of≥20, and single peptide> 15 (41). The other parameters
are specified in the Supplementary material.

2.5. Untargeted metabolomic measurements

Blood plasma samples were collected and analyzed using a
UHPLC Agilent 1290 Infinity II (Agilent Technologies) device
coupled with a high-resolution QqTOF mass spectrometer (Bruker
Daltonics - Impact, Rheinstetten, Germany). Details are provided in
the Supplementary material.

2.6. Statistical analysis, bioinformatics, and
gene ontology

The statistical analysis of the PTE levels was performed
using Statistica 12.5. A non-paired two-tailed Student’s t-test was
performed to identify the metals whose concentrations differed
between the Welder and Control groups.

Statistical analysis of the proteins was conducted on
MetaboAnalyst 4.0 (42) using the 979 proteins identified in
both study groups. Of the total 979 proteins, those with missing
values in 50% or more samples were excluded, giving 411 proteins.
The missing values were due to the equipment resolution. The
missing values for the 411 remaining variables were estimated by the
k-nearest neighbors’ algorithm (k-NN). The data were subsequently
normalized by automatic scaling. Principal components analysis
(PCA), Partial Least-Squares Discriminant Analysis (PLS-DA), and
Student’s t-test were then performed. The PCA unsupervised test
was run in order to observe the tendency of the group separation.
PLS-DA was then performed in order to check whether the proteins
profile was able to distinguish between exposure and control
groups (Supplementary Figure 2). A heatmap was constructed with
the significant variables obtained from Student’s t-test. Pearson’s
correlation between PTE levels and protein was determined and
clusters identified among genes, saliva expression and blood Ni,
Cu, Zn, Sn, Sb, and Pb levels based on Euclidean distance using
MetaboAnalyst 4.0 for both analyses (42) (Figure 1).

Gene ontology consists of an instrument for biological study
of genes (43). The bioinformatic tool DAVID (https://david.ncifcrf.
gov/tools.jsp) (2021 update) was used for this analysis in order to
determine the biological processes, molecular functions and cellular
components encompassed by the proteins identified on Uniprot
(44, 45).

A Metabolome-Wide Association Study (MWAS) was conducted
to investigate the association between blood metabolomics and
exposure groups using multiple linear regression models using
R4.0.3. The dependent variable in the model was metabolite, and the
exposure variable was exposure status (exposure and control groups).
The model was adjusted for sex and age (46).

Then using the results of the MWAS analysis, a pathway
enrichment analysis was conducted using the Mummichog program
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FIGURE 1

Correlation heatmap with hierarchical cluster analysis based on Pearson correlation coe�cient. Distance is scaled and values range from 1 (red color) to

−1 (dark blue color). Correlation of gene saliva expression associated with blood Ni, Cu, Zn, Sn, Sb, and Pb metal concentrations.

(47), supplemented with manual curation of the metabolite identities
assigned by Mummichog, using a similar procedure to that adopted
by Handakas (Supplementary material) (48). Detailed, the results
of the MWAS were used as an input data from the mummichog.
Mummichog requires two lists of m/z features, the significant list, and
the reference list. Then, mummichog computes all possibly matched

metabolites, and searches the reference metabolic network for all the
modules that can be formed by these tentative metabolites.

Finally, a multi-omics (proteomics and metabolomics) analysis
was performed to assess the metabolic pathways potentially disturbed
by home-based occupational exposure to PTEs using MetaboAnalyst
4.0 (42).
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3. Results

3.1. Study design

Supplementary Table 3 shows the characteristics of the
population included in the present analysis. The subsample of
participants for the proteomics study was selected based on the
results from our previous study (16) when we evaluated the blood
PTEs levels. In this study, we did not find a significant difference
in PTEs levels between the groups when the wider population was
included. But, the measured concentrations of Cu, Zn, Cd, and Pb
exceeded the occupational limits. Values were also found be above the
Minimal Risk Level for chronic inhalation (MRL) for the elements
Mn, Ni and Cd and environmental limits for Mn, Ni, Zn, Cd and
Pb for levels determined on the welders’ breathing zone. As can be
verified in the Supplementary Figure 1, the sample power analysis
determines the minimum sample size of 27 participants needed for a
statistical power of 0.8 and significance level of 0.05. Therefore, the
sub-sample was selected on the basis of the results of our previous
study, the high cost of performing the proteomics analysis, and
the power analysis described above. A total of 26 participants were
selected, comprising 13 welders and 13 controls, all women and
within a similar age range. The metabolomics sample is larger and
more diverse, as in other studies published by our research group
(16, 36). The exposure group consists of jewelry workers and their
relatives.

3.2. Proteomic results

Student’s t-test and PLS-DA analysis were performed to search
for proteins with levels that differed statistically between welders and
controls. The target proteins found to be significant by Student’s t-
test (p < 0.05), corrected with the FDR (FDR < 0.05), and that
also had a Variable Importance in the Projection (VIP) score >

1.0, were considered significant proteins whose saliva levels were
able to distinguish between the welders and control subjects. The
predictive ability of this model (Q2) was 0.73, and the goodness
of fit (R2) was 0.93. Protein regulation was defined by Student’s t-
test, in which significant concentrations were displayed on boxplots
with their interpretation (whether up or downregulated in welders
group) described in Table 1. Of the 40 proteins identified, 26 were
upregulated and 14 downregulated in the welder group relative to the
control group (Table 1).

PCA analysis was carried out to observe the separation tendency
between the exposure groups. In the present analysis, the first two
principal components explained 26.4% of the protein level variance.
The PCA score plots and PLS-DA showed a distinct separation
between the two exposure groups (Supplementary Figure 2).

3.3. Gene ontology: Protein functional
analysis

The gene ontology analysis of the 40 proteins found to exhibit
a significant difference (p-value < 0.05 and VIP score > 1.0)
between exposed and control groups designates which biological

processes, molecular functions or cellular components are regulated
by these proteins.

The gene ontology results for the proteins upregulated in the
welders are given in Supplementary Table 4. Some of the biological
processes regulating these proteins include translation initiation,
signal recognition particle (SRP)-dependent co-translational protein
targeting to membrane, and viral transcription. Regarding the
molecular functions of these proteins, the most significant terms were
structural constituent of ribosome and protein binding. The main
ontology terms of cellular components regulated by the upregulated
proteins were extracellular exosome, focal adhesion and membrane.

The gene ontology results for the significant proteins
found to be downregulated in older individuals are given in
Supplementary Table 5. Some of the biological processes regulated
by these proteins are the Fc-gamma receptor signaling pathway
involved in phagocytosis and negative regulation of protein complex
assembly. The only molecular function found to be significant for
the downregulated proteins was antigen binding, and the cellular
components were extracellular exosome and cytoplasm.

3.4. Blood PTE levels and correlated target
proteins

The PTEs determined in blood samples are presented by exposure
group in Supplementary Tables 6, 7. The welders exhibited higher
blood Cu levels (p< 0.001). Themean blood Snwas not calculated for
control subjects because most values found were below the Limit of
Quantification, whereas the mean Sn value for exposed participants
was 1.218 ppm. Therefore, it can be inferred that the welders may be
exposed to this element throughout the working process.

Hierarchical cluster analysis based on Pearson correlation
coefficient was performed to correlate saliva gene expression with
blood PTE levels. A total of 30 proteins were found to be
significantly correlated (p < 0.05) with PTEs (Supplementary Table 8
and Figure 1), 14 of which were significantly correlated with two
PTEs (Figure 2).

The analysis showed two clusters each with one subcluster.
The first cluster consisted of 26 proteins upregulated in welders.
The respective subclusters are formed by some proteins correlated
with PTEs and others which are not. The second cluster consisted
of 14 proteins downregulated in welders and the subcluster
comprises proteins which are both downregulated and associated
with PTE levels.

3.5. Blood PTE levels and correlated
metabolites

The PTEs determined in blood samples are presented by exposure
group in Supplementary Tables 6, 7. We evaluated the association
between the blood biomarkers of exposure and metabolites with
MWAS: 103 metabolic features were found significantly associated
with the Cu blood levels and one feature with Zn levels. Then, those
metabolites were used in the pathway enrichment analysis performed
with the mummichog algorithm. That analysis found 118 metabolic
pathways, 3 of them significant (p < 0.005), and with four or more of
those metabolic compounds overlapped on the same pathway.
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TABLE 1 Proteins up or down-regulated in welders.

Protein IDs Gene names Up/Down

1433G Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein gamma (YWHAG) Up

1433G Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein Gamma (YWHAG) Up

AL9A1 Aldehyde dehydrogenase 9 family member A1 (ALDH9A1) Up

ARF6 ADP ribosylation factor 6 (ARF6) Up

ARGI1 Arginase 1 (ARG1) Down

ARP2 ARP2 actin related protein 2 homolog (ACTR2) Up

ARP2 ARP2 actin related protein 2 homolog (ACTR2) Up

ARP3 ARP3 actin related protein 3 homolog (ACTR3) Up

CAN1 Calpain 1 (CAPN1) Up

CAN1 Calpain 1 (CAPN1) Up

CAPZB Capping actin protein of muscle Z-line beta subunit (CAPZB) Down

CDC42 Cell division cycle 42 (CDC42) Down

CPNS1 Calpain small subunit 1 (CAPNS1) Up

CRBG1 Absent in melanoma 1 (AIM1) Up

CRBG1 Absent in melanoma 1 (AIM1) Up

DDX3X DEAD-box helicase 3, X-linked (DDX3X) Down

FLNB Filamin B (FLNB) Up

FLNB Filamin B (FLNB) Up

FM25A Family with sequence similarity 25 member A (FAM25A) Up

FM25C Family with sequence similarity 25 member C (FAM25C) Up

HV459 Immunoglobulin heavy variable 4-59 (IGHV4-59) Down

HV461 Immunoglobulin heavy variable 4-61 (IGHV4-61) Down

HV64D Immunoglobulin heavy variable 3-64D Down

HVD34 Immunoglobulin heavy variable 4-30-4 (IGHV4-30-4) Down

HVD82 Immunoglobulin heavy variable 4-38-2 (IGHV4-38-2) Down

IF4A1 Eukaryotic translation initiation factor 4A1 (EIF4A1) Up

IMB1 Karyopherin subunit beta 1 (KPNB1) Down

LV39 Immunoglobulin lambda variable 3-9 (gene/pseudogene) (IGLV3-9) Down

LV39 Immunoglobulin lambda variable 3-9 (gene/pseudogene) (IGLV3-9) Down

LV743 Immunoglobulin lambda variable 7-43 (IGLV7-43) Down

LV743 Immunoglobulin lambda variable 7-43 (IGLV7-43) Down

MNDA Myeloid cell nuclear differentiation antigen (MNDA) Up

NUCB1 Nucleobindin 1 (NUCB1) Up

PDIA6 Protein disulfide isomerase family A member 6 (PDIA6) Up

PLBL1 Phospholipase B domain containing 1 (PLBD1) Up

RAB5B RAB5B, member RAS oncogene family (RAB5B) Up

RAB5B RAB5B, member RAS oncogene family (RAB5B) Up

RL22 Ribosomal protein L22 (RPL22) Up

RLA2 Ribosomal protein lateral stalk subunit P2 (RPLP2) Up

RS10 Ribosomal protein S10 (RPS10) Up

RS9 Ribosomal protein S9 (RPS9) Up

SAP Prosaposin (PSAP) Up

(Continued)
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TABLE 1 (Continued)

Protein IDs Gene names Up/Down

SH3L3 SH3 domain binding glutamate rich protein like 3 (SH3BGRL3) Down

SNAA NSF attachment protein alpha (NAPA) Up

SPR1A Small proline rich protein 1A (SPRR1A) Down

SPR1A Small proline rich protein 1A (SPRR1A) Down

SPTN1 Spectrin alpha, non-erythrocytic 1 (SPTAN1) Up

TM11D Transmembrane protease, serine 11D (TMPRSS11D) Up

VDAC1 Voltage dependent anion channel 1 (VDAC1) Up

FIGURE 2

VENN diagram depicting saliva proteins correlated with Ni, Cu, Zn, Sn,

Sb, and Pb levels (p < 0.05).

3.6. Metabolome-wide association and
pathway enrichment analysis

Mummichog analysis indicated enrichment among exposure
group and control group in the “Purine metabolism”, “Aspartate
and asparagine metabolism”, and “Valine, leucine, and isoleucine
degradation” pathways (Supplementary Table 1).

Additionally, for the subsample population of the 26 participants,
Mummichog analysis indicated enrichment among exposure group
and control group in the Arginine and ProlineMetabolism, Carnitine
shuttle, Purine metabolism, Urea cycle/amino group metabolism,
Glycerophospholipid metabolism, Valine, leucine and isoleucine
degradation, Aspartate and asparagine metabolism, Vitamin E
metabolism, Prostaglandin formation from arachidonate, Pyrimidine
metabolism, Glycine serine alanine and threonine metabolism
information (Supplementary Table 2).

3.7. Joint multi-omics analysis of pathways

A joint analysis of pathways was performed of the 40 proteins
up or downregulated in welders’ saliva and the 73 significant
metabolites associated with exposure status of the participants.
The joint analysis of pathways revealed seven significant metabolic
pathways (Supplementary Table 2).

4. Discussion

To the best of our knowledge, this is the first study investigating
changes in metabolite and protein profiles of informal workers
engaged in the jewelry production chain. As will be further detailed
below, the proteins CRBG1, RAB5B, 1433G, MNDA, and RLA2 were
found to be correlated with PTE levels in humans. These findings
are novel and have not been described elsewhere. A total of 40
proteins were found to be differentially expressed in welders relative
to controls: 26 upregulated and 14 downregulated in the workers
(Table 1). Of the 26 upregulated proteins, 17 were correlated with
at least one blood PTE level. Moreover, 14 proteins were found to
be downregulated in the workers relative to controls, 13 of which
were also correlated with blood PTE levels. Occupational exposure
to harmful substances has been associated with a wide range of
proteins involved in health outcomes (26, 27, 49). Each of the PTEs
that the studied population may be exposed to has distinct toxicity
mechanisms and can disturb gene expression of a protein in different
cells or biological systems (50–56).

Blood sample analysis for proteomics is challenging. Blood
encompasses the most complex human proteome (57), constituting
90% high-abundance proteins (such as albumin and IgG) (58).
Given that the sample complexity results in loss of information on
important proteins (59), we chose to investigate the saliva proteome,
which is more homogeneous and requires fewer preparation steps,
thereby minimizing identification and quantification errors (60–62).

Previous studies have used saliva as a biological matrix for
biochemical assessment of human toxic exposure. Saliva is considered
“the body mirror” as it has proteins of low abundance and great
possibility for diagnosis (63–65), favoring the use of this matrix in
exposome studies (62).

We found that the 1433G protein was upregulated in
welders (Table 1) and correlated with blood Pb and Sn levels
(Supplementary Table 8). The 1433G protein plays a role in signal
transduction apoptosis and cell cycle regulation and is also used
as a biomarker of neurological disorders, being involved in neural
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transmission regulatory processes and signal transduction (66–68).
Xie et al. (69) reported that the 1433G protein was upregulated in
a mushroom capable of accumulating Pb and Cd. In the present
study, we failed to observe a significantly higher Pb concentration
level in the exposure group compared to the control group (p =

0.053) (Supplementary Table 6). Nevertheless, in our recent study of
the same Limeira population, we showed that blood Pb levels were
determined in welders’ breathing zone (16). Additionally, Salles et al.
(70) found a higher Pb concentration in blood samples collected
from a larger number of informal welders in the same municipality,
in Brazil.

In the present study, higher blood Cu levels (p < 0.001)
(Supplementary Table 6) were detected in welders compared to
controls. In a previous study, we measured high levels of Cu in the
welding supplies used by the same group of workers (36). At low
levels, Cu is an essential compound for several enzymatic activities
(71), but at high levels becomes toxic, accumulating in hepatocytes
and inducing lipidic disturbance and chromosome 13 disorder (72,
73). Therefore, this element can be harmful to the kidneys and liver
(74, 75) and is also associated with anemia, immunotoxicity and
developmental impairment (76, 77). The present analysis revealed
that seven proteins, including CRBG1, were correlated with blood Cu
levels (Supplementary Table 8). The table (Supplementary Table 8)
contains the interpretation of Pearson’s correlation coefficient for
each metal. Results show that CRBG1 and Sn are positively correlated
while CRBG1 and Cu negatively correlated. However, CRBG1 was
upregulated in the welders’ group. Since CRBG1 was both positively
correlated with Sn blood levels and upregulated, the higher the Sn
level, the higher the CRBG1. Likewise, the negative correlation of
CRBG1 with Cu indicates these variables are inversely correlated. Ray
et al. (78) showed that CRBG1 was associated with melanoma and
plays a suppressing role in malignant melanoma (78). RAB5B was
another protein upregulated in the welders (Table 1) and correlated
with blood Cu and Sn levels (Supplementary Table 8). The protein
has previously been associated with sulfite oxidase deficiency and
Parkinson disease and is a therapeutic target in Polycystic Ovary
Syndrome (79).

The exposed group also had higher blood Sn levels, probably
due to welding activity, given that most of the control participants
had this trace element in amounts below the quantification limit.
The PTE Sn had the highest number of proteins correlated with it,
totaling 25 (Supplementary Table 8), comprising 12 upregulated and
13 downregulated in the welders (Table 1). MNDA and PDIA6 were 2
of the upregulated proteins (Table 1). TheMNDA protein is a salivary
biological marker for Sjogren Syndrome and for distinguishing
between different kinds of lymphomas (80, 81). MNDA is also related
to NF-kappa-B, apoptosis and autophagy signaling pathways. PDIA6
has an isomerase function (82) and its overexpression has been
correlated with a poor cancer prognosis and serves as a biomarker
for non-small cell lung cancer (NSCLC) (83). RLA2, another protein
found to be upregulated in the welders (Table 1), has also been
described as a marker of osseous metastasis and of other malignant
tumors, such as gynecologic tumors and carcinoma of the pancreas,
colon, and digestive system (84–86). RLA2 plays a role in protein
synthesis lengthening, DNA repair, proliferation, apoptosis, and
tumorigenesis. Pathways of this protein are related to viral mRNA
translation and flu viral replication and transcription (86).

Monastero et al. (87) points out that the interpretation of
changes in protein expression as a health effect of PTE exposure
poses a challenge. The author also highlights that the study of the

TABLE 2 Statistically significant metabolic pathways from joint multi-omics

analysis.

Pathways Raw p-value FDR

Valine, leucine, and isoleucine biosynthesis 1.01−9 3.33−7

Arginine and proline metabolism 4.57−8 7.57−6

ABC transporters 7.21−7 7.96−5

Arachidonic acid metabolism 1.42−6 1.14−4

Central carbon metabolism in cancer 4.53−6 3.00−4

Valine, leucine, and isoleucine degradation 3.31−5 1.82−3

Cysteine and methionine metabolism 9.44−5 4.46−3

biological pathways is necessary in order to better understand which
protein pathways are being up or downregulated. We performed a
joint analysis of pathways for significant proteins and metabolites,
identifying seven pathways that may be disturbed by PTE exposure.
One of those pathways (arginine and proline metabolism; Table 2)
have been reported to be impacted by Cd exposure through an
analysis of the urinary metabolome of mice (88). Although the blood
Cd levels detected in the present study were not significant, other
studies conducted by our group in the same population have found
high Cd levels in urine, as well as in welding powder (flux) and
costume jewelry pieces (36).

The ABC transporters pathway has been previously implicated in
heavy metal transportation, as well as metabolic diseases, cancer, and
Alzheimer’s disease (89). In this study, pathway activity was enriched
in 3 and 11 pathways for the total population and the subsample,
respectively. Although not based on fully validated annotation of
the metabolome, Mummichog results express the likelihood of the
involvement of specific metabolic pathways in the response to
PTE exposure levels. Two out of the three pathways selected by
Mummichog are related to amino acids for the total population.
Additionally, the multi-omics pathway analysis in MetaboAnalyst
showed that 3 out of the 11 metabolic pathways are related to amino
acids (Supplementary Table 2). A metabolomic study of workers
exposed to welding fumes also showed disturbance in amino acid
pathways (leucine, isoleucine, and proline metabolism) (90). The
nephrotoxicity of Cu nanoparticles in rats leads to disturbance in
the expression of genes involved in valine leucine and isoleucine
degradation (91).

Also, given the disrupted pathways are disturbed for both
the blood metabolome and saliva proteome, use of both matrices
increases the reliability of result, as both tissues validate the findings.
The two analyses differ in terms of extraction methods, analysis
equipment, and laboratory used. Therefore, final integration, i.e.,
analyzing each omics separately and combining their final predictions
(92) may serve to validate the study findings regarding disturbed
biological responses to occupational exposure. The large amount of
information and limited success of traditional approaches justify the
need for holistic approaches in an effort to obtain more consolidated
results (93).

The present study has some limitations, such as the small number
of participants for proteomic analysis, providing only preliminary
results. Also, only workers who performed welding were included in
the analysis, i.e., a specific sub-sample with higher chemical exposure
in comparison with assembly workers. Furthermore, it is extremely
hard to engage this population in research projects, as they have
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an informal occupation and are worried about losing their jobs.
Another reason for the small number of participants included in
the proteomic analyses is the difficulty for some participants to
collect a sufficient amount of saliva. This situation arises mainly
because of individual traits, but may also stem from the PTE exposure
itself, whose presence has been reported to impair saliva secretion
volume (44). Although potential biomarkers were found, the proteins
were not confirmed by western blotting analysis in this phase of
the study.

We have described metabolic and proteomic profiles associated
with PTE exposure, highlighting the role of multiple metabolites,
proteins, and genes in various pathways. Our findings shed new
light on the effect of occupational activity on the workers’ exposome,
underscoring the harmful effects of PTE. These associations should
be validated in future causal studies.
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