137 research outputs found

    Interference-aware coordinated power allocation in autonomous Wi-Fi environment

    Full text link
    Self-managed access points (APs) with growing intelligence can optimize their own performances but pose potential negative impacts on others without energy ef ciency. In this paper, we focus on modeling the coordinated interaction among interest-independent and self-con gured APs, and conduct the power allocation case study in the autonomous Wi-Fi scenario. Speci cally, we build a `coordination Wi-Fi platform (CWP), a public platform for APs interacting with each other. OpenWrt-based APs in the physical world are mapped to virtual agents (VAs) in CWP, which communicate with each other through a standard request-reply process de ned as AP talk protocol (ATP).With ATP, an active interference measurement methodology is proposed re ecting both in-range interference and hidden terminal interference, and the Nash bargaining-based power control is further formulated for interference reductions. CWP is deployed in a real of ce environment, where coordination interactions between VAs can bring a maximum 40-Mb/s throughput improvement with the Nash bargaining-based power control in the multi-AP experiments

    3, 4-dihydroxyl-phenyl lactic acid restores NADH dehydrogenase 1 α subunit 10 to ameliorate cardiac reperfusion injury.

    Get PDF
    The present study aimed to detect the role of 3, 4-dihydroxyl-phenyl lactic acid (DLA) during ischemia/reperfusion (I/R) induced myocardial injury with emphasis on the underlying mechanism of DLA antioxidant. Male Spragu-Dawley (SD) rats were subjected to left descending artery occlusion followed by reperfusion. Treatment with DLA ameliorated myocardial structure and function disorder, blunted the impairment of Complex I activity and mitochondrial function after I/R. The results of 2-D fluorescence difference gel electrophoresis revealed that DLA prevented the decrease in NDUFA10 expression, one of the subunits of Complex I. To find the target of DLA, the binding affinity of Sirtuin 1 (SIRT1) to DLA and DLA derivatives with replaced two phenolic hydroxyls was detected using surface plasmon resonance and bilayer interferometry. The results showed that DLA could activate SIRT1 after I/R probably by binding to this protein, depending on phenolic hydroxyl. Moreover, the importance of SIRT1 to DLA effectiveness was confirmed through siRNA transfection in vitro. These results demonstrated that DLA was able to prevent I/R induced decrease in NDUFA10 expression, improve Complex I activity and mitochondrial function, eventually attenuate cardiac structure and function injury after I/R, which was possibly related to its ability of binding to and activating SIRT1

    Electrospinning as a route to advanced carbon fibre materials for selected low-temperature electrochemical devices: a review

    Get PDF
    Electrospinning has been proven as a highly versatile fabrication method for producing nano-structured fibres with controllable morphology, of both the fibres themselves and the void structure of the mats. Additionally, it is possible to use heteroatom doped polymers or to include catalytic precursors in the electrospinning solution to control the surface properties of the fibres. These factors make it an ideal method for the production of electrodes and flow media for a variety of electrochemical devices, enabling reduction in mass transport and activation overpotentials and therefore increasing efficiency. Moreover, the use of biomass as a polymer source has recently gained attention for the ability to embed sustainable principles in the materials of electrochemical devices, complementing their ability to allow an increase in the use of renewable electricity via their application. In this review, the historical and recent developments of electrospun materials for application in redox flow batteries, fuel cells, metal air batteries and supercapacitors are thoroughly reviewed, including an overview of the electrospinning process and a guide to best practice. Finally, we provide an outlook for the emerging use of this process in the field of electrochemical energy devices with the hope that the combination of tailored microstructure, surface functionality and computer modelling will herald a new era of bespoke functional materials that can significantly improve the performance of the devices in which they are used

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Tourism Demand Modeling and Forecasting: A Review of Literature Related to Greater China

    Full text link

    Interference-Aware Coordinated Power Allocation in Autonomous Wi-Fi Environment

    No full text
    Self-managed access points (APs) with growing intelligence can optimize their own performances but pose potential negative impacts on others without energy efficiency. In this paper, we focus on modeling the coordinated interaction among interest-independent and self-configured APs, and conduct the power allocation case study in the autonomous Wi-Fi scenario. Specifically, we build a `coordination Wi-Fi platform (CWP), a public platform for APs interacting with each other. OpenWrt-based APs in the physical world are mapped to virtual agents (VAs) in CWP, which communicate with each other through a standard request-reply process defined as AP talk protocol (ATP). With ATP, an active interference measurement methodology is proposed reflecting both in-range interference and hidden terminal interference, and the Nash bargaining-based power control is further formulated for interference reductions. CWP is deployed in a real office environment, where coordination interactions between VAs can bring a maximum 40-Mb/s throughput improvement with the Nash bargaining-based power control in the multi-AP experiments

    Resource allocation in space multiaccess systems

    Full text link

    Resource Allocation in Space Multiaccess Systems

    No full text

    Tribological Characteristics of Lubricating Oils with Ammonium Thiophosphate Under Electromagnetic Field

    No full text
    Tribological properties of lubricating oil containing T307 with and without electromagnetic field affection were evaluated on a modified four-ball tribo-tester. The morphologies and chemical states of several typical elements on the worn surfaces were examined by scanning electron microscope(SEM) and X-ray photoelectron spectroscopy(XPS). Then the mechanisms were discussed. The results indicate that the wear scar diameters of worn surfaces lubricated with the T307-doped oils and coefficients of friction obtained from electromagnetic field were bigger than those obtained from non-electromagnetic field. It can be attributed to the negative effect of the electromagnetic field on the combination of elemental phosphorus, sulfur, oxygen and nitrogen in T307 with metal surface, which has an undesirable effect on the formation of the tribo-chemical reaction films, and resulted by the tribo-diffussion of functional elements in T307 to the subsurface induced by electromagnetism. Moreover, the influencing mechanism of electromagnetic field was analyzed considering the molecular structure and active elements
    corecore