47 research outputs found

    Using geophysics on a terminal moraine damming a glacial lake: the Flatbre debris flow case, Western Norway

    Get PDF
    A debris flow occurred on 8 May 2004, in Fjǽrland, Western Norway, due to a Glacial Lake Outburst Flood and a natural terminal moraine failure. The site was investigated in 2004 and 2005, using pre- and post-flow aerial photos, airborne laser scanning, and extensive field work investigations, resulting in a good understanding of the mechanics of the debris flow, with quantification of the entrainment and determination of the final volume involved. However, though the moraine had a clear weak point, with lower elevation and erosion due to overflowing in the melting season, the sudden rupture of the moraine still needs to be explained. As moraines often contain an ice core, a possible cause could be the melting of the ice, inducing a progressive weakening of the structure. Geophysical investigations were therefore carried out in September 2006, including seismic refraction, GPR and resistivity. All methods worked well, but none revealed the presence of ice, though the depth to bedrock was determined. On the contrary, the moraine appeared to be highly saturated in water, especially in one area, away from the actual breach and corresponding to observed water seepage at the foot of the moraine. To estimate future hazard, water circulation through the moraine should be monitored over time

    Variation of Accumulation Rates Over the Last Eight Centuries on the East Antarctic Plateau Derived from Volcanic Signals in Ice Cores

    Get PDF
    Volcanic signatures in ice-core records provide an excellent means to date the cores and obtain information about accumulation rates. From several ice cores it is thus possible to extract a spatio-temporal accumulation pattern. We show records of electrical conductivity and sulfur from firn cores from the Norwegian-USA scientific traverse during the International Polar Year 2007-2009 (IPY) through East Antarctica. Major volcanic eruptions are identified and used to assess century-scale accumulation changes. The largest changes seem to occur in the most recent decades with accumulation over the period 1963- 2007/08 being up to 25 % different from the long-term record. There is no clear overall trend, some sites show an increase in accumulation over the period 1963 to present while others show a decrease. Almost all of the sites above 3200 m above sea level (asl) suggest a decrease. These sites also show a significantly lower accumulation value than large-scale assessments both for the period 1963 to present and for the long-term mean at the respective drill sites. The spatial accumulation distribution is influenced mainly by elevation and distance to the ocean (continentality), as expected. Ground-penetrating radar data around the drill sites show a spatial variability within 10-20 % over several tens of kilometers, indicating that our drill sites are well representative for the area around them. Our results are important for large-scale assessments of Antarctic mass balance and model validation

    The WISDOM Radar: Unveiling the Subsurface Beneath the ExoMars Rover and Identifying the Best Locations for Drilling

    Get PDF
    The search for evidence of past or present life on Mars is the principal objective of the 2020 ESA-Roscosmos ExoMars Rover mission. If such evidence is to be found anywhere, it will most likely be in the subsurface, where organic molecules are shielded from the destructive effects of ionizing radiation and atmospheric oxidants. For this reason, the ExoMars Rover mission has been optimized to investigate the subsurface to identify, understand, and sample those locations where conditions for the preservation of evidence of past life are most likely to be found. The Water Ice Subsurface Deposit Observation on Mars (WISDOM) ground-penetrating radar has been designed to provide information about the nature of the shallow subsurface over depth ranging from 3 to 10 m (with a vertical resolution of up to 3 cm), depending on the dielectric properties of the regolith. This depth range is critical to understanding the geologic evolution stratigraphy and distribution and state of subsurface H2O, which provide important clues in the search for life and the identification of optimal drilling sites for investigation and sampling by the Rover's 2-m drill. WISDOM will help ensure the safety and success of drilling operations by identification of potential hazards that might interfere with retrieval of subsurface samples

    An investigation in the correlation between Ayurvedic body-constitution and food-taste preference

    Get PDF

    Local Plane-Wave Imaging of GPR Data

    No full text

    Analysis of Fully Polarimetric Laboratory Measurements Performed with the WISDOM Radar

    No full text
    The Ground Penetrating Radar WISDOM (Water Ice Subsurface Deposit Observation on Mars) is one of the instruments selected to be part of the Pasteur payload of ESA's ExoMars Rover mission. The main scientific objectives of the Pasteur payload are to search for evidence of past and present life on Mars and to characterize the nature of the shallow subsurface. WISDOM is capable to obtain subsurface information along the rover path and to explore the first 3 meters of the soil with a vertical resolution of a few centimeters. WISDOM will help identify the location of sedimentary layers, where organic molecules are most likely to be found. By investigating geometry, location and properties of buried reflectors, WISDOM will contribute to the understanding of the 3D geological structure, electromagnetic nature, and, possibly, the state of water and ice in the shallow subsurface. WISDOM measurements will be performed 1) by conducting periodic soundings along the Rover traverse, which will provide a coarse, non-uniform, but positionally well-determined investigation of the landing site and 2) by selected high-resolution surveys of areas of strong scientific interest, which are identified for potential investigation and sampling by the Rover's drill. Such surveys will generally be conducted by acquiring a number of closely spaced parallel profiles. Supported by specific hardware features, like the arrangement of the fully polarimetric antenna system, an interpolated 3-D subsurface map of the local stratigraphy can be constructed from these radar measurements. Laboratory measurements are performed on a planar scanner in the anechoic chamber to simulate the closely spaced parallel profiles of selected high-resolution surveys. To characterize the performance of the radar and to be able to analyze the influence of radiation coupling effects between the rover and the antennas, the fully polarimetric WISDOM antenna system was mounted on a simple rover-like mockup. Calibration algorithms were applied to reduce the interference from radiation coupling and cross-talk between transmitting and receiving antenna. The analysis of the laboratory measurement will show features of the fully polarimetric radar system and quantify most of the important performance parameters. Synthetic aperture processing is implemented to increase the azimuth resolution of radar. The three dimensional reconstruction of the positioning of an arrangement of discrete objects will be shown

    Preliminary Results of Simulations and Field Investigations of the Performance of the WISDOM GPR of the ExoMars Rover

    No full text
    International audienceWISDOM (Water Ice and Subsurface Deposit Observations on Mars) is a ground penetrat-ing radar (GPR) that was selected as one of three survey instruments on the ExoMars Rover Pasteur Payload. Its purpose is to characterize the nature of the shallow subsurface (including geological structure, electromagnetic properties, and potential hydrological state) and identify the most promising locations for investigation and sampling by the Rover's onboard drill - providing information down to a depth of 2 or 3 meters with a vertical resolution of a few centimeters (performance characteristics that will vary, depending on the local permittivity and conductivity of the subsurface). WISDOM is a polarimetric, step-frequency GPR operating over the frequency range of 0.5 - 3 GHz. The polarimetric capability of WISDOM is particularly useful for identifying and characterizing oriented structures like faults, fractures and stratigraphic interface roughness. To achieve this objective, special care has been dedicated to the design of the antenna system, which consists of a pair of Vivaldi antenna to conduct both co- and cross-polar measurements. WISDOM will perform its scientific investigations at each of the sites visited by the Rover and during the intervening traverses. During a traverse between two successive experiment cycles of the mission (drilling and sample analysis), WISDOM soundings will be performed to provide a coarse survey of the structure and nature of the underground and its large-scale variations. This information is required to understand the overall geological context and the properties of the subsurface. When a particular location has been selected for potential investigation by the drill, WISDOM will obtain subsurface profiles on a 2D grid, in order to synthesize a 3D map of subsurface soil characteristics and spatial variabil-ity. Full polarimetric soundings will be performed at 10 cm intervals along each parallel grid line, which will have a line-to-line spacing of 100cm. The typical grid-size for this 3D characterization is 5 m x 5 m. FDTD electromagntic simulations have been run on realistic Martian subsurface models to investigate the likely performances of the instrument once on Mars. In additiona, experi-mental field data was acquired during a 2008 mission to Svalabard, where the performance of the instrument in a permafrost environment was demonstrated. The results of that inves-tigation showed that WISDOM is capable of obtaining accurate data to depths in excess of 2-3 meters in ice-rich environments - successfully soundings through sediment layers, ice, and even into the underlying moraine, with sufficient spatial resolution to identify fine-scale layering within the intervening ice. Further results of these investigations will be presented at the meeting

    Preliminary Results of Simulations and Field Investigations of the Performance of the WISDOM GPR of the ExoMars Rover

    No full text
    International audienceWISDOM (Water Ice and Subsurface Deposit Observations on Mars) is a ground penetrat-ing radar (GPR) that was selected as one of three survey instruments on the ExoMars Rover Pasteur Payload. Its purpose is to characterize the nature of the shallow subsurface (including geological structure, electromagnetic properties, and potential hydrological state) and identify the most promising locations for investigation and sampling by the Rover's onboard drill - providing information down to a depth of 2 or 3 meters with a vertical resolution of a few centimeters (performance characteristics that will vary, depending on the local permittivity and conductivity of the subsurface). WISDOM is a polarimetric, step-frequency GPR operating over the frequency range of 0.5 - 3 GHz. The polarimetric capability of WISDOM is particularly useful for identifying and characterizing oriented structures like faults, fractures and stratigraphic interface roughness. To achieve this objective, special care has been dedicated to the design of the antenna system, which consists of a pair of Vivaldi antenna to conduct both co- and cross-polar measurements. WISDOM will perform its scientific investigations at each of the sites visited by the Rover and during the intervening traverses. During a traverse between two successive experiment cycles of the mission (drilling and sample analysis), WISDOM soundings will be performed to provide a coarse survey of the structure and nature of the underground and its large-scale variations. This information is required to understand the overall geological context and the properties of the subsurface. When a particular location has been selected for potential investigation by the drill, WISDOM will obtain subsurface profiles on a 2D grid, in order to synthesize a 3D map of subsurface soil characteristics and spatial variabil-ity. Full polarimetric soundings will be performed at 10 cm intervals along each parallel grid line, which will have a line-to-line spacing of 100cm. The typical grid-size for this 3D characterization is 5 m x 5 m. FDTD electromagntic simulations have been run on realistic Martian subsurface models to investigate the likely performances of the instrument once on Mars. In additiona, experi-mental field data was acquired during a 2008 mission to Svalabard, where the performance of the instrument in a permafrost environment was demonstrated. The results of that inves-tigation showed that WISDOM is capable of obtaining accurate data to depths in excess of 2-3 meters in ice-rich environments - successfully soundings through sediment layers, ice, and even into the underlying moraine, with sufficient spatial resolution to identify fine-scale layering within the intervening ice. Further results of these investigations will be presented at the meeting

    Preliminary Results of Simulations and Field Investigations of the Performance of the WISDOM GPR of the ExoMars Rover

    No full text
    WISDOM (Water Ice and Subsurface Deposit Observations on Mars) is a ground penetrat-ing radar (GPR) that was selected as one of three survey instruments on the ExoMars Rover Pasteur Payload. Its purpose is to characterize the nature of the shallow subsurface (including geological structure, electromagnetic properties, and potential hydrological state) and identify the most promising locations for investigation and sampling by the Rover's onboard drill - providing information down to a depth of 2 or 3 meters with a vertical resolution of a few centimeters (performance characteristics that will vary, depending on the local permittivity and conductivity of the subsurface). WISDOM is a polarimetric, step-frequency GPR operating over the frequency range of 0.5 - 3 GHz. The polarimetric capability of WISDOM is particularly useful for identifying and characterizing oriented structures like faults, fractures and stratigraphic interface roughness. To achieve this objective, special care has been dedicated to the design of the antenna system, which consists of a pair of Vivaldi antenna to conduct both co- and cross-polar measurements. WISDOM will perform its scientific investigations at each of the sites visited by the Rover and during the intervening traverses. During a traverse between two successive experiment cycles of the mission (drilling and sample analysis), WISDOM soundings will be performed to provide a coarse survey of the structure and nature of the underground and its large-scale variations. This information is required to understand the overall geological context and the properties of the subsurface. When a particular location has been selected for potential investigation by the drill, WISDOM will obtain subsurface profiles on a 2D grid, in order to synthesize a 3D map of subsurface soil characteristics and spatial variabil-ity. Full polarimetric soundings will be performed at 10 cm intervals along each parallel grid line, which will have a line-to-line spacing of 100cm. The typical grid-size for this 3D characterization is 5 m x 5 m. FDTD electromagntic simulations have been run on realistic Martian subsurface models to investigate the likely performances of the instrument once on Mars. In additiona, experi-mental field data was acquired during a 2008 mission to Svalabard, where the performance of the instrument in a permafrost environment was demonstrated. The results of that inves-tigation showed that WISDOM is capable of obtaining accurate data to depths in excess of 2-3 meters in ice-rich environments - successfully soundings through sediment layers, ice, and even into the underlying moraine, with sufficient spatial resolution to identify fine-scale layering within the intervening ice. Further results of these investigations will be presented at the meeting

    Performances of the WISDOM GPR Designed for the Shallow Sounding of Mars

    No full text
    WISDOM (Water Ice and Subsur-face Deposit Observations on Mars) is a Ground Pene-trating Radar (GPR) that is one of the panoramic in-struments selected to be part of the Pasteur payload onboard the Rover of the ExoMars mission. These Pas-teur Panoramic Instruments (the wide angle camera PANCAM, the infrared spectrometer MIMA and WISDOM) will perform large-scale scientific investi-gations at the sites the Rover will visit. Among these instruments, WISDOM is the only one that can provide information about the subsurface structure prior to drilling. WISDOM has been designed to characterize the shallow subsurface structure of Mars. It will give access to the geological structure, electromagnetic na-ture, and, possi-bly, to the hydrological state of the shallow subsurface by retrieving the layering and prop-erties of the buried reflectors. In addition, the data it will provide will be used to determine the most promis-ing locations at which to obtain underground samples with the drilling system mounted on board the rover. This paper describes the WISDOM instrument particular attention is paid on its antennas design as well as on its operations during the mission. Eventually the first measurements performed with a WISDOM prototype on Earth are presented. They show very promising results to well below 2-meter depth
    corecore