357 research outputs found
Strange form factors and Chiral Perturbation Theory
We review the contributions of Chiral Perturbation Theory to the theoretical
understanding or not-quite-yet-understanding of the nucleon matrix elements of
the strange vector current.Comment: 4 pages, 6 figures, presented at the International Workshop on Parity
Violation and Hadronic Structure (PAVI04), Grenoble, France, 8-11 Jun 200
Strange chiral nucleon form factors
We investigate the strange electric and magnetic form factors of the nucleon
in the framework of heavy baryon chiral perturbation theory to third order in
the chiral expansion. All counterterms can be fixed from data. In particular,
the two unknown singlet couplings can be deduced from the parity-violating
electron scattering experiments performed by the SAMPLE and the HAPPEX
collaborations. Within the given uncertainties, our analysis leads to a small
and positive electric strangeness radius, .
We also deduce the consequences for the upcoming MAMI A4 experiment.Comment: 7 pp, REVTeX, uses epsf, minor correction
Strange form factors in the context of SAMPLE, HAPPEX, and A4 experiments
The strange properties of the nucleon are investigated within the framework
of the SU(3) chiral quark-soliton model assuming isospin symmetry and applying
the symmetry conserving SU(3) quantization. We present the form factors
, and the electric and magnetic strange form
factors incorporating pion and kaon asymptotics. The results
show a fairly good agreement with the recent experimental data from the SAMPLE
and HAPPEX collaborations. We also present predictions for future measurements
including the A4 experiment at MAMI (Mainz).Comment: 10 pages with four figures. RevTeX4 is used. Few lines are changed.
Accepted for publication in Phys.Rev.
Strange nucleon form factors in the perturbative chiral quark model
We apply the perturbative chiral quark model at one loop to calculate the
strange form factors of the nucleon. A detailed numerical analysis of the
strange magnetic moments and radii of the nucleon, and also the momentum
dependence of the form factors is presented.Comment: 18 pages, 6 figure
Electroweak Radiative Corrections to Parity-Violating Electroexcitation of the
We analyze the degree to which parity-violating (PV) electroexcitation of the
resonance may be used to extract the weak neutral axial vector
transition form factors. We find that the axial vector electroweak radiative
corrections are large and theoretically uncertain, thereby modifying the
nominal interpretation of the PV asymmetry in terms of the weak neutral form
factors. We also show that, in contrast to the situation for elastic electron
scattering, the axial PV asymmetry does not vanish at the photon
point as a consequence of a new term entering the radiative corrections. We
argue that an experimental determination of these radiative corrections would
be of interest for hadron structure theory, possibly shedding light on the
violation of Hara's theorem in weak, radiative hyperon decays.Comment: RevTex, 76 page
Neutral weak currents in pion electroproduction on the nucleon
Parity violating asymmetry in inclusive scattering of longitudinally
polarized electrons by unpolarized protons with or meson
production, is calculated as a function of the momentum transfer squared
and the total energy of the -system. This asymmetry, which is
induced by the interference of the one-photon exchange amplitude with the
parity-odd part of the -exchange amplitude, is calculated for the
processes ( is a virtual photon and
a virtual Z-boson) considering the -contribution in the channel,
the standard Born contributions and vector meson ( and )
exchanges in the channel. Taking into account the known isotopic properties
of the hadron electromagnetic and neutral currents, we show that the P-odd term
is the sum of two contributions. The main term is model independent and it can
be calculated exactly in terms of fundamental constants. It is found to be
linear in . The second term is a relatively small correction which is
determined by the isoscalar component of the electromagnetic current. Near
threshold and in the -region, this isoscalar part is much smaller (in
absolute value) than the isovector one: its contribution to the asymmetry
depend on the polarization state (longitudinal or transverse) of the virtual
photon.Comment: 30 pages 9 figure
Spin structure of the nucleon at low energies
The spin structure of the nucleon is analyzed in the framework of a
Lorentz-invariant formulation of baryon chiral perturbation theory. The
structure functions of doubly virtual Compton scattering are calculated to
one-loop accuracy (fourth order in the chiral expansion). We discuss the
generalization of the Gerasimov-Drell-Hearn sum rule, the Burkhardt-Cottingham
sum rule and moments of these. We give predictions for the forward and the
longitudinal-transverse spin polarizabilities of the proton and the neutron at
zero and finite photon virtuality. A detailed comparison to results obtained in
heavy baryon chiral perturbation theory is also given.Comment: 29 pp, 14 fig
Reaction and Axial Vector Coupling
The reaction is studied in the region of low
to investigate the effect of deuteron structure and width of the
resonance on the differential cross section. The results are used to extract
the axial vector coupling from the experimental data on
this reaction. The possibility to determine this coupling from electroweak
interaction experiments with high intensity electron accelerators is discussed.Comment: 14 pages, REVTEX, 5 figure
Efimov physics from the functional renormalization group
Few-body physics related to the Efimov effect is discussed using the
functional renormalization group method. After a short review of
renormalization in its modern formulation we apply this formalism to the
description of scattering and bound states in few-body systems of identical
bosons and distinguishable fermions with two and three components. The Efimov
effect leads to a limit cycle in the renormalization group flow. Recently
measured three-body loss rates in an ultracold Fermi gas Li atoms are
explained within this framework. We also discuss briefly the relation to the
many-body physics of the BCS-BEC crossover for two-component fermions and the
formation of a trion phase for the case of three species.Comment: 28 pages, 13 figures, invited contribution to a special issue of
"Few-Body Systems" devoted to Efimov physics, published versio
A new measurement of the structure functions and in virtual Compton scattering at 0.33 (GeV/c)
The cross section of the reaction has been measured at
(GeV/c). The experiment was performed using the electron beam
of the MAMI accelerator and the standard detector setup of the A1
Collaboration. The cross section is analyzed using the low-energy theorem for
virtual Compton scattering, yielding a new determination of the two structure
functions P_LL}-P_{TT}/epsilon and which are linear combinations of
the generalized polarizabilities of the proton. We find somewhat larger values
than in the previous investigation at the same . This difference, however,
is purely due to our more refined analysis of the data. The results tend to
confirm the non-trivial -evolution of the generalized polarizabilities and
call for more measurements in the low- region ( 1 (GeV/c)).Comment: 9 pages, 10 figures. EPJA version. slight revisions in the text and
figure
- …