204 research outputs found

    Discovery of a new Local Group Dwarf Galaxy Candidate in UNIONS: Bo\"otes V

    Full text link
    We present the discovery of Bo\"otes V, a new ultra-faint dwarf galaxy candidate. This satellite is detected as a resolved overdensity of stars during an ongoing search for new Local Group dwarf galaxy candidates in the UNIONS photometric dataset. It has a physical half-light radius of 26.95.4+7.5^{+7.5}_{-5.4} pc, a VV-band magnitude of -4.5 ±\pm 0.4 mag, and resides at a heliocentric distance of approximately 100 kpc. We use Gaia DR3 astrometry to identify member stars, characterize the systemic proper motion, and confirm the reality of this faint stellar system. The brightest star in this system was followed up using Gemini GMOS-N long-slit spectroscopy and is measured to have a metallicity of [Fe/H] == -2.85 ±\pm 0.10 dex and a heliocentric radial velocity of vrv_r = 5.1 ±\pm 13.4 km s1^{-1}. Bo\"otes V is larger (in terms of scale radius), more distant, and more metal-poor than the vast majority of globular clusters. It is likely that Bo\"otes V is an ultra-faint dwarf galaxy, though future spectroscopic studies will be necessary to definitively classify this object.Comment: 13 pages, 7 figures, 3 tables. Accepted for publication in the AAS Journals. Please note that this paper was submitted in coordination with the work of William Cerny et al. 2022. These authors independently discovered this same satellite so our two research groups have coordinated the submission of these discovery paper

    Hydraulic and biotic impacts on neutralisation of high-pH waters

    Get PDF
    The management of alkaline (pH 11–12.5) leachate is an important issue associated with the conditioning, afteruse or disposal of steel slags. Passive in-gassing of atmospheric CO₂ is a low cost option for reducing Ca(OH)₂ alkalinity, as Ca(OH)₂ is neutralised by carbonic acid to produce CaCO₃. The relative effectiveness of such treatment can be affected by both the system geometry (i.e. stepped cascades versus settlement ponds) and biological colonization. Sterilized mesocosm experiments run over periods of 20 days showed that, due to more water mixing and enhanced CO₂ dissolution at the weirs, the cascade systems (pH 11.2 → 9.6) are more effective than settlement ponds (pH 11.2 → 11.0) for lowering leachate alkalinity in all the tested conditions. The presence of an active microbial biofilm resulted in significantly more pH reduction in ponds (pH 11.2 → 9.5), but had a small impact on the cascade systems (pH 11.2 → 9.4). The pH variation in biofilm colonized systems shows a diurnal cycle of 1 to 1.5 pH units due to CO₂ uptake and release associated with respiration and photosynthesis. The results demonstrate that, where gradient permits, aeration via stepped cascades are the best option for neutralisation of steel slag leachates, and where feasible, the development of biofilm communities can also help reduce alkalinity

    Rapid and slow: Varying magma ascent rates as a mechanism for Vulcanian explosions

    Get PDF
    Vulcanian explosions are one of the most common types of volcanic activity observed at silicic volcanoes. Magma ascent rates are often invoked as being the fundamental control on their explosivity, yet this factor is poorly constrained for low magnitude end-member Vulcanian explosions, which are particularly poorly understood, partly due to the rarity of ash samples and low gas fluxes. We describe ash generated by small Vulcanian explosions at Volcán de Colima in 2013, where we document for the first time marked differences in the vesicularity, crystal characteristics (volume fraction, size and shape) and glass compositions in juvenile material from discrete events. We interpret these variations as representing differing ascent styles and speeds of magma pulses within the conduit. Heterogeneous degassing during ascent leads to fast ascending, gas-rich magma pulses together with slow ascending gas-poor magma pulses within the same conduit. This inferred heterogeneity is complemented by SO2 flux data, which show transient episodes of both open and closed system degassing, indicating efficient shallow fracture sealing mechanisms, which allows for gas overpressure to generate small Vulcanian explosions

    Ebola Zaire Virus Blocks Type I Interferon Production by Exploiting the Host SUMO Modification Machinery

    Get PDF
    Ebola Zaire virus is highly pathogenic for humans, with case fatality rates approaching 90% in large outbreaks in Africa. The virus replicates in macrophages and dendritic cells (DCs), suppressing production of type I interferons (IFNs) while inducing the release of large quantities of proinflammatory cytokines. Although the viral VP35 protein has been shown to inhibit IFN responses, the mechanism by which it blocks IFN production has not been fully elucidated. We expressed VP35 from a mouse-adapted variant of Ebola Zaire virus in murine DCs by retroviral gene transfer, and tested for IFN transcription upon Newcastle Disease virus (NDV) infection and toll-like receptor signaling. We found that VP35 inhibited IFN transcription in DCs following these stimuli by disabling the activity of IRF7, a transcription factor required for IFN transcription. By yeast two-hybrid screens and coimmunoprecipitation assays, we found that VP35 interacted with IRF7, Ubc9 and PIAS1. The latter two are the host SUMO E2 enzyme and E3 ligase, respectively. VP35, while not itself a SUMO ligase, increased PIAS1-mediated SUMOylation of IRF7, and repressed Ifn transcription. In contrast, VP35 did not interfere with the activation of NF-κB, which is required for induction of many proinflammatory cytokines. Our findings indicate that Ebola Zaire virus exploits the cellular SUMOylation machinery for its advantage and help to explain how the virus overcomes host innate defenses, causing rapidly overwhelming infection to produce a syndrome resembling fulminant septic shock

    Characterization and plant expression of glyphosate-tolerant enolpyruvylshikimate phosphate synthase

    Get PDF
    Abstract BACKGROUND: Glyphosate tolerance is a dominant trait in modern biotech crops. RESULTS: A gene encoding a glyphosate-tolerant EPSP synthase (aroA 1398 ) from bacterial strain ATX1398 was cloned and characterized. The protein is initiated at a GTG translational start codon to produce a protein that provides robust glyphosate resistance in Escherichia coli (Mig) Cast & Chalm. The aroA 1398 protein was expressed and purified from E. coli, and key kinetic values were determined (K i = 161 µM; K m (PEP) = 11.3 µM; k cat = 28.3 s −1 ). The full-length enzyme is 800-fold more resistant to glyphosate than the maize EPSP synthase while retaining high affinity for the substrate phosphoenol pyruvate. To evaluate further the potential of aroA 1398 , transgenic maize events expressing the aroA 1398 protein were generated. T 0 plants were screened for tolerance to glyphosate sprays at 1.3× commercial spray rates, and T 1 plants were selected that completely resisted glyphosate sprays at 1×, 2× and 4× recommended spray rates in field trials. CONCLUSION: These data suggest that aroA 1398 is a suitable candidate for conferring glyphosate tolerance in transgenic crop plants

    stairs and fire

    Get PDF
    corecore