124 research outputs found

    High pressure Raman, optical absorption, and resistivity study of SrCrO4

    Get PDF
    We studied the electronic and vibrational properties of monazite-type SrCrO4 under compression. The study extended the pressure range of previous studies from 26 to 58 GPa. The existence of two previously reported phase transitions was confirmed at 9 and 14 GPa, and two new phase transitions were found at 35 and 48 GPa. These transitions involve several changes in the vibrational and transport properties with the new high-pressure phases having a conductivity lower than that of the previously known phases. No evidence of chemical decomposition or metallization of SrCrO4 was detected. A tentative explanation for the reported observations is discussed

    Electronic correlations in the iron pnictides

    Full text link
    In correlated metals derived from Mott insulators, the motion of an electron is impeded by Coulomb repulsion due to other electrons. This phenomenon causes a substantial reduction in the electron's kinetic energy leading to remarkable experimental manifestations in optical spectroscopy. The high-Tc superconducting cuprates are perhaps the most studied examples of such correlated metals. The occurrence of high-Tc superconductivity in the iron pnictides puts a spotlight on the relevance of correlation effects in these materials. Here we present an infrared and optical study on single crystals of the iron pnictide superconductor LaFePO. We find clear evidence of electronic correlations in metallic LaFePO with the kinetic energy of the electrons reduced to half of that predicted by band theory of nearly free electrons. Hallmarks of strong electronic many-body effects reported here are important because the iron pnictides expose a new pathway towards a correlated electron state that does not explicitly involve the Mott transition.Comment: 10 page

    Comparison of Statistical Population Reconstruction Using Full and Pooled Adult Age-Class Data

    Get PDF
    BACKGROUND: Age-at-harvest data are among the most commonly collected, yet neglected, demographic data gathered by wildlife agencies. Statistical population construction techniques can use this information to estimate the abundance of wild populations over wide geographic areas and concurrently estimate recruitment, harvest, and natural survival rates. Although current reconstruction techniques use full age-class data (0.5, 1.5, 2.5, 3.5, … years), it is not always possible to determine an animal's age due to inaccuracy of the methods, expense, and logistics of sample collection. The ability to inventory wild populations would be greatly expanded if pooled adult age-class data (e.g., 0.5, 1.5, 2.5+ years) could be successfully used in statistical population reconstruction. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the performance of statistical population reconstruction models developed to analyze full age-class and pooled adult age-class data. We performed Monte Carlo simulations using a stochastic version of a Leslie matrix model, which generated data over a wide range of abundance levels, harvest rates, and natural survival probabilities, representing medium-to-big game species. Results of full age-class and pooled adult age-class population reconstructions were compared for accuracy and precision. No discernible difference in accuracy was detected, but precision was slightly reduced when using the pooled adult age-class reconstruction. On average, the coefficient of variation (i.e., SE(θ)/θ) increased by 0.059 when the adult age-class data were pooled prior to analyses. The analyses and maximum likelihood model for pooled adult age-class reconstruction are illustrated for a black-tailed deer (Odocoileus hemionus) population in Washington State. CONCLUSIONS/SIGNIFICANCE: Inventorying wild populations is one of the greatest challenges of wildlife agencies. These new statistical population reconstruction models should expand the demographic capabilities of wildlife agencies that have already collected pooled adult age-class data or are seeking a cost-effective method for monitoring the status and trends of our wild resources

    Beliefs about bad people are volatile

    Get PDF
    People form moral impressions rapidly, effortlessly and from a remarkably young age1,2,3,4,5. Putatively \u2018bad\u2019 agents command more attention and are identified more quickly and accurately than benign or friendly agents5,6,7,8,9,10,11,12. Such vigilance is adaptive, but can also be costly in environments where people sometimes make mistakes, because incorrectly attributing bad character to good people damages existing relationships and discourages forming new relationships13,14,15,16. The ability to accurately infer the moral character of others is critical for healthy social functioning, but the computational processes that support this ability are not well understood. Here, we show that moral inference is explained by an asymmetric Bayesian updating mechanism in which beliefs about the morality of bad agents are more uncertain (and therefore more volatile) than beliefs about the morality of good agents. This asymmetry seems to be a property of learning about immoral agents in general, as we also find greater uncertainty for beliefs about the non-moral traits of bad agents. Our model and data reveal a cognitive mechanism that permits flexible updating of beliefs about potentially threatening others, a mechanism that could facilitate forgiveness when initial bad impressions turn out to be inaccurate. Our findings suggest that negative moral impressions destabilize beliefs about others, promoting cognitive flexibility in the service of cooperative but cautious behaviour

    Cdc45 Limits Replicon Usage from a Low Density of preRCs in Mammalian Cells

    Get PDF
    Little is known about mammalian preRC stoichiometry, the number of preRCs on chromosomes, and how this relates to replicon size and usage. We show here that, on average, each 100-kb of the mammalian genome contains a preRC composed of approximately one ORC hexamer, 4–5 MCM hexamers, and 2 Cdc6. Relative to these subunits, ∼0.35 total molecules of the pre-Initiation Complex factor Cdc45 are present. Thus, based on ORC availability, somatic cells contain ∼70,000 preRCs of this average total stoichiometry, although subunits may not be juxtaposed with each other. Except for ORC, the chromatin-bound complement of preRC subunits is even lower. Cdc45 is present at very low levels relative to the preRC subunits, but is highly stable, and the same limited number of stable Cdc45 molecules are present from the beginning of S-phase to its completion. Efforts to artificially increase Cdc45 levels through ectopic expression block cell growth. However, microinjection of excess purified Cdc45 into S-phase nuclei activates additional replication foci by three-fold, indicating that Cdc45 functions to activate dormant preRCs and is rate-limiting for somatic replicon usage. Paradoxically, although Cdc45 colocalizes in vivo with some MCM sites and is rate-limiting for DNA replication to occur, neither Cdc45 nor MCMs colocalize with active replication sites. Embryonic metazoan chromatin consists of small replicons that are used efficiently via an excess of preRC subunits. In contrast, somatic mammalian cells contain a low density of preRCs, each containing only a few MCMs that compete for limiting amounts of Cdc45. This provides a molecular explanation why, relative to embryonic replicon dynamics, somatic replicons are, on average, larger and origin efficiency tends to be lower. The stable, continuous, and rate-limiting nature of Cdc45 suggests that Cdc45 contributes to the staggering of replicon usage throughout S-phase, and that replicon activation requires reutilization of existing Cdc45 during S-phase

    Stress Strengthens Memory of First Impressions of Others' Positive Personality Traits

    Get PDF
    Encounters with strangers bear potential for social conflict and stress, but also allow the formation of alliances. First impressions of other people play a critical role in the formation of alliances, since they provide a learned base to infer the other's future social attitude. Stress can facilitate emotional memories but it is unknown whether stress strengthens our memory for newly acquired impressions of other people's personality traits. To answer this question, we subjected 60 students (37 females, 23 males) to an impression-formation task, viewing portraits together with brief positive vs. negative behavior descriptions, followed by a 3-min cold pressor stress test or a non-stressful control procedure. The next day, novel and old portraits were paired with single trait adjectives, the old portraits with a trait adjective matching the previous day's behavior description. After a filler task, portraits were presented again and subjects were asked to recall the trait adjective. Cued recall was higher for old (previously implied) than the novel portraits' trait adjectives, indicating validity of the applied test procedures. Overall, recall rate of implied trait adjectives did not differ between the stress and the control group. However, while the control group showed a better memory performance for others' implied negative personality traits, the stress group showed enhanced recall for others' implied positive personality traits. This result indicates that post-learning stress affects consolidation of first impressions in a valence-specific manner. We propose that the stress-induced strengthening of memory of others' positive traits forms an important cue for the formation of alliances in stressful conditions

    A Comprehensive Genome-Wide Map of Autonomously Replicating Sequences in a Naive Genome

    Get PDF
    Eukaryotic chromosomes initiate DNA synthesis from multiple replication origins. The machinery that initiates DNA synthesis is highly conserved, but the sites where the replication initiation proteins bind have diverged significantly. Functional comparative genomics is an obvious approach to study the evolution of replication origins. However, to date, the Saccharomyces cerevisiae replication origin map is the only genome map available. Using an iterative approach that combines computational prediction and functional validation, we have generated a high-resolution genome-wide map of DNA replication origins in Kluyveromyces lactis. Unlike other yeasts or metazoans, K. lactis autonomously replicating sequences (KlARSs) contain a 50 bp consensus motif suggestive of a dimeric structure. This motif is necessary and largely sufficient for initiation and was used to dependably identify 145 of the up to 156 non-repetitive intergenic ARSs projected for the K. lactis genome. Though similar in genome sizes, K. lactis has half as many ARSs as its distant relative S. cerevisiae. Comparative genomic analysis shows that ARSs in K. lactis and S. cerevisiae preferentially localize to non-syntenic intergenic regions, linking ARSs with loci of accelerated evolutionary change

    Evidence for Sequential and Increasing Activation of Replication Origins along Replication Timing Gradients in the Human Genome

    Get PDF
    Genome-wide replication timing studies have suggested that mammalian chromosomes consist of megabase-scale domains of coordinated origin firing separated by large originless transition regions. Here, we report a quantitative genome-wide analysis of DNA replication kinetics in several human cell types that contradicts this view. DNA combing in HeLa cells sorted into four temporal compartments of S phase shows that replication origins are spaced at 40 kb intervals and fire as small clusters whose synchrony increases during S phase and that replication fork velocity (mean 0.7 kb/min, maximum 2.0 kb/min) remains constant and narrowly distributed through S phase. However, multi-scale analysis of a genome-wide replication timing profile shows a broad distribution of replication timing gradients with practically no regions larger than 100 kb replicating at less than 2 kb/min. Therefore, HeLa cells lack large regions of unidirectional fork progression. Temporal transition regions are replicated by sequential activation of origins at a rate that increases during S phase and replication timing gradients are set by the delay and the spacing between successive origin firings rather than by the velocity of single forks. Activation of internal origins in a specific temporal transition region is directly demonstrated by DNA combing of the IGH locus in HeLa cells. Analysis of published origin maps in HeLa cells and published replication timing and DNA combing data in several other cell types corroborate these findings, with the interesting exception of embryonic stem cells where regions of unidirectional fork progression seem more abundant. These results can be explained if origins fire independently of each other but under the control of long-range chromatin structure, or if replication forks progressing from early origins stimulate initiation in nearby unreplicated DNA. These findings shed a new light on the replication timing program of mammalian genomes and provide a general model for their replication kinetics

    Mathematical Modeling and Simulation of Ventricular Activation Sequences: Implications for Cardiac Resynchronization Therapy

    Get PDF
    Next to clinical and experimental research, mathematical modeling plays a crucial role in medicine. Biomedical research takes place on many different levels, from molecules to the whole organism. Due to the complexity of biological systems, the interactions between components are often difficult or impossible to understand without the help of mathematical models. Mathematical models of cardiac electrophysiology have made a tremendous progress since the first numerical ECG simulations in the 1960s. This paper briefly reviews the development of this field and discusses some example cases where models have helped us forward, emphasizing applications that are relevant for the study of heart failure and cardiac resynchronization therapy

    The 2021 room-temperature superconductivity roadmap.

    Get PDF
    Designing materials with advanced functionalities is the main focus of contemporary solid-state physics and chemistry. Research efforts worldwide are funneled into a few high-end goals, one of the oldest, and most fascinating of which is the search for an ambient temperature superconductor (A-SC). The reason is clear: superconductivity at ambient conditions implies being able to handle, measure and access a single, coherent, macroscopic quantum mechanical state without the limitations associated with cryogenics and pressurization. This would not only open exciting avenues for fundamental research, but also pave the road for a wide range of technological applications, affecting strategic areas such as energy conservation and climate change. In this roadmap we have collected contributions from many of the main actors working on superconductivity, and asked them to share their personal viewpoint on the field. The hope is that this article will serve not only as an instantaneous picture of the status of research, but also as a true roadmap defining the main long-term theoretical and experimental challenges that lie ahead. Interestingly, although the current research in superconductor design is dominated by conventional (phonon-mediated) superconductors, there seems to be a widespread consensus that achieving A-SC may require different pairing mechanisms.In memoriam, to Neil Ashcroft, who inspired us all
    corecore