151 research outputs found

    Outbreak of gastroenteritis caused by Yersinia pestis in Afghanistan.

    Get PDF
    Plague, which is most often caused by the bite of Yersinia pestis-infected fleas, is a rapidly progressing, serious disease that can be fatal without prompt antibiotic treatment. In late December 2007, an outbreak of acute gastroenteritis occurred in Nimroz Province of southern Afghanistan. Of the 83 probable cases of illness, 17 died (case fatality 20·5%). Being a case was associated with consumption or handling of camel meat (adjusted odds ratio 4·4, 95% confidence interval 2·2-8·8, P<0·001). Molecular testing of patient clinical samples and of tissue from the camel using PCR/electrospray ionization-mass spectrometry revealed DNA signatures consistent with Yersinia pestis. Confirmatory testing using real-time PCR and immunological seroconversion of one of the patients confirmed that the outbreak was caused by plague, with a rare gastrointestinal presentation. The study highlights the challenges of identifying infectious agents in low-resource settings; it is the first reported occurrence of plague in Afghanistan

    Ferritinophagy and ferroptosis in the management of metabolic diseases

    Get PDF
    Ferroptosis is a form of regulated cell death modality associated with disturbed iron-homeostasis and unrestricted lipid peroxidation. Ample evidence has depicted an essential role for ferroptosis as either the cause or consequence for human diseases, denoting the likely therapeutic promises for targeting ferroptosis in the preservation of human health. Ferritinophagy, a selective form of autophagy, contributes to the initiation of ferroptosis through degradation of ferritin, which triggers labile iron overload (IO), lipid peroxidation, membrane damage, and cell death. In this review, we will delineate the role of ferritinophagy in ferroptosis, and its underlying regulatory mechanisms, to unveil the therapeutic value of ferritinophagy as a target in the combat of ferroptosis to manage metabolic diseases.Peer reviewe

    CACNA1C (CaV1.2) and other L-type calcium channels in the pathophysiology and treatment of psychiatric disorders: Advances from functional genomics and pharmacoepidemiology

    Get PDF
    A role for voltage-gated calcium channels (VGCCs) in psychiatric disorders has long been postulated as part of a broader involvement of intracellular calcium signalling. However, the data were inconclusive and hard to interpret. We review three areas of research that have markedly advanced the field. First, there is now robust genomic evidence that common variants in VGCC subunit genes, notably CACNA1C which encodes the L-type calcium channel (LTCC) CaV1.2 subunit, are trans-diagnostically associated with psychiatric disorders including schizophrenia and bipolar disorder. Rare variants in these genes also contribute to the risk. Second, pharmacoepidemiological evidence supports the possibility that calcium channel blockers, which target LTCCs, might have beneficial effects on the onset or course of these disorders. This is especially true for calcium channel blockers that are brain penetrant. Third, long-range sequencing is revealing the repertoire of full-length LTCC transcript isoforms. Many novel and abundant CACNA1C isoforms have been identified in human and mouse brain, including some which are enriched compared to heart or aorta, and predicted to encode channels with differing functional and pharmacological properties. These isoforms may contribute to the molecular mechanisms of genetic association to psychiatric disorders. They may also enable development of therapeutic agents that can preferentially target brain LTCC isoforms and be of potential value for psychiatric indications

    3D finite element electrical model of larval zebrafish ECG signals

    Get PDF
    Assessment of heart function in zebrafish larvae using electrocardiography (ECG) is a potentially useful tool in developing cardiac treatments and the assessment of drug therapies. In order to better understand how a measured ECG waveform is related to the structure of the heart, its position within the larva and the position of the electrodes, a 3D model of a 3 days post fertilisation (dpf) larval zebrafish was developed to simulate cardiac electrical activity and investigate the voltage distribution throughout the body. The geometry consisted of two main components; the zebrafish body was modelled as a homogeneous volume, while the heart was split into five distinct regions (sinoatrial region, atrial wall, atrioventricular band, ventricular wall and heart chambers). Similarly, the electrical model consisted of two parts with the body described by Laplace’s equation and the heart using a bidomain ionic model based upon the Fitzhugh-Nagumo equations. Each region of the heart was differentiated by action potential (AP) parameters and activation wave conduction velocities, which were fitted and scaled based on previously published experimental results. ECG measurements in vivo at different electrode recording positions were then compared to the model results. The model was able to simulate action potentials, wave propagation and all the major features (P wave, R wave, T wave) of the ECG, as well as polarity of the peaks observed at each position. This model was based upon our current understanding of the structure of the normal zebrafish larval heart. Further development would enable us to incorporate features associated with the diseased heart and hence assist in the interpretation of larval zebrafish ECGs in these conditions

    Platform session

    Get PDF

    The Science Performance of JWST as Characterized in Commissioning

    Get PDF
    This paper characterizes the actual science performance of the James Webb Space Telescope (JWST), as determined from the six month commissioning period. We summarize the performance of the spacecraft, telescope, science instruments, and ground system, with an emphasis on differences from pre-launch expectations. Commissioning has made clear that JWST is fully capable of achieving the discoveries for which it was built. Moreover, almost across the board, the science performance of JWST is better than expected; in most cases, JWST will go deeper faster than expected. The telescope and instrument suite have demonstrated the sensitivity, stability, image quality, and spectral range that are necessary to transform our understanding of the cosmos through observations spanning from near-earth asteroids to the most distant galaxies
    corecore