24 research outputs found

    COVID-19 first lockdown as a window into language acquisition : associations between caregiver-child activities and vocabulary gains

    Get PDF
    The COVID-19 pandemic, and the resulting closure of daycare centers worldwide, led to unprecedented changes in children’s learning environments. This period of increased time at home with caregivers, with limited access to external sources (e.g., daycares) provides a unique opportunity to examine the associations between the caregiver-child activities and children’s language development. The vocabularies of 1742 children aged8-36 months across 13 countries and 12 languages were evaluated at the beginning and end of the first lockdown period in their respective countries(from March to September 2020). Children who had less passive screen exposure and whose caregivers read more to them showed larger gains in vocabulary development during lockdown, after controlling for SES and other caregiver-child activities. Children also gained more words than expected (based on normative data) during lockdown; either caregivers were more aware of their child’s development or vocabulary development benefited from intense caregiver-child interaction during lockdown

    COVID-19 first lockdown as a window into language acquisition: Associations between caregiver-child activities and vocabulary gains

    Get PDF
    The COVID-19 pandemic, and the resulting closure of daycare centers worldwide, led to unprecedented changes in children’s learning environments. This period of increased time at home with caregivers, with limited access to external sources (e.g., daycares) provides a unique opportunity to examine the associations between the caregiver-child activities and children’s language development. The vocabularies of 1742 children aged 8-36 months across 13 countries and 12 languages were evaluated at the beginning and end of the first lockdown period in their respective countries (from March to September 2020). Children who had less passive screen exposure and whose caregivers read more to them showed larger gains in vocabulary development during lockdown, after controlling for SES and other caregiver-child activities. Children also gained more words than expected (based on normative data) during lockdown; either caregivers were more aware of their child’s development or vocabulary development benefited from intense caregiver-child interaction during lockdown

    Data from: Improving accuracy of DNA diet estimates using food tissue control materials and an evaluation of proxies for digestion bias

    No full text
    Ecologists are increasingly interested in quantifying consumer diets based on food DNA in dietary samples and high-throughput sequencing of marker genes. It is tempting to assume that food DNA sequence proportions recovered from diet samples are representative of consumer's diet proportions, despite the fact that captive feeding studies do not support that assumption. Here, we examine the idea of sequencing control materials of known composition along with dietary samples in order to correct for technical biases introduced during amplicon sequencing and biological biases such as variable gene copy number. Using the Ion Torrent PGM©, we sequenced prey DNA amplified from scats of captive harbour seals (Phoca vitulina) fed a constant diet including three fish species in known proportions. Alongside, we sequenced a prey tissue mix matching the seals’ diet to generate tissue correction factors (TCFs). TCFs improved the diet estimates (based on sequence proportions) for all species and reduced the average estimate error from 28 ± 15% (uncorrected) to 14 ± 9% (TCF-corrected). The experimental design also allowed us to infer the magnitude of prey-specific digestion biases and calculate digestion correction factors (DCFs). The DCFs were compared with possible proxies for differential digestion (e.g. fish protein%, fish lipid%) revealing a strong relationship between the DCFs and percent lipid of the fish prey, suggesting prey-specific corrections based on lipid content would produce accurate diet estimates in this study system. These findings demonstrate the value of parallel sequencing of food tissue mixtures in diet studies and offer new directions for future research in quantitative DNA diet analysis

    Tissue mix DNA amplicon pool (.fastq)

    No full text
    This file contains the DNA sequences and quality scores that resulted from Ion Torrent amplicon sequencing of a fish tissue mixture that matched the seal diet in the study. See manuscript text for details

    Sarcocystis neurona Transmission from Opossums to Marine Mammals in the Pacific Northwest.

    No full text
    Increasing reports of marine mammal deaths have been attributed to the parasite Sarcocystis neurona. Infected opossums, the only known definitive hosts, shed S. neurona sporocysts in their feces. Sporocysts can contaminate the marine environment via overland runoff, and subsequent ingestion by marine mammals can lead to fatal encephalitis. Our aim was to determine the prevalence of S. neurona in opossums from coastal areas of Washington State (USA) and to compare genetic markers between S. neurona in opossums and marine mammals. Thirty-two road-kill opossums and tissue samples from 30 stranded marine mammals meeting inclusion criteria were included in analyses. Three opossums (9.4%) and twelve marine mammals (40%) were confirmed positive for S. neurona via DNA amplification at the ITS1 locus. Genetic identity at microsatellites (sn3, sn7, sn9) and the snSAG3 gene of S. neurona was demonstrated among one harbor porpoise and two opossums. Watershed mapping further demonstrated plausible sporocyst transport pathways from one of these opossums to the location where an infected harbor porpoise carcass was recovered. Our results provide the first reported link between S. neurona genotypes on land and sea in the Pacific Northwest, and further demonstrate how terrestrial pathogen pollution can impact the health of marine wildlife

    Isolation and characterization of the fall Chinook aquareovirus

    No full text
    Abstract Background Salmon are paramount to the economy, ecology, and history of the Pacific Northwest. Viruses constitute one of the major threats to salmon health and well-being, with more than twenty known virus species that infect salmon. Here, we describe the isolation and characterization of the fall Chinook aquareovirus, a divergent member of the species Aquareovirus B within the family Reoviridae. Methods The virus was first found in 2014 as part of a routine adult broodstock screening program in which kidney and spleen tissue samples from healthy-appearing, adult fall Chinook salmon (Oncorhynchus tshawytscha) returning to a hatchery in Washington State produced cytopathic effects when inoculated onto a Chinook salmon embryo cell line (CHSE-214). The virus was not able to be confirmed by an RT-PCR assay using existing aquareovirus pan-species primers, and instead was identified by metagenomic next-generation sequencing. Metagenomic next-generation sequencing was used to recover the full genome and completed using 3â€Č RACE. Results The genome of the fall Chinook aquareovirus contains 11 segments of double-stranded RNA totaling 23.3 kb, with each segment flanked by the canonical sequence termini found in the aquareoviruses. Sequence comparisons and a phylogenetic analysis revealed a nucleotide identity of 63.2% in the VP7 gene with the Green River Chinook virus, placing the new isolate in the species Aquareovirus B. A qRT-PCR assay was developed targeting the VP2, which showed rapid growth of the isolate during the initial 5 days in culture using CHSE-214 cells. Conclusions This sequence represents the first complete genome of an Aquareovirus B species. Future studies will be required to understand the potential pathogenicity and epidemiology of the fall Chinook aquareovirus

    Seal scat DNA amplicon pool (.fastq)

    No full text
    This file contains the DNA sequences and quality scores that resulted from Ion Torrent amplicon sequencing of 48 individually amplified seal scats from the feeding trial. The harbour seals were fed: capelin (Mallotus villosus) (40%), Pacific herring (Clupea pallasii) (30%), chub mackerel (Scomber japonicus) (15%), and market squid (Loligo opalescens) (15%). See text for details
    corecore