836 research outputs found

    PSRCHIVE and PSRFITS: Definition of the Stokes Parameters and Instrumental Basis Conventions

    Full text link
    This paper defines the mathematical convention adopted to describe an electromagnetic wave and its polarisation state, as implemented in the PSRCHIVE software and represented in the PSRFITS definition. Contrast is made between the convention that has been widely accepted by pulsar astronomers and the IAU/IEEE definitions of the Stokes parameters. The former is adopted as the PSR/IEEE convention, and a set of useful parameters are presented for describing the differences between the PSR/IEEE standard and the conventions (either implicit or explicit) that form part of the design of observatory instrumentation. To aid in the empirical determination of instrumental convention parameters, well-calibrated average polarisation profiles of PSR J0304+1932 and PSR J0742-2822 are presented at radio wavelengths of approximately 10, 20, and 40 cm.Comment: 7 pages, 2 figures, to be published in PAS

    First Florida Record of Taphromysis louisianae (Crustacea: Mysidacea)

    Get PDF

    The MeqTrees software system and its use for third-generation calibration of radio interferometers

    Full text link
    The formulation of the radio interferometer measurement equation (RIME) by Hamaker et al. has provided us with an elegant mathematical apparatus for better understanding, simulation and calibration of existing and future instruments. The calibration of the new radio telescopes (LOFAR, SKA) would be unthinkable without the RIME formalism, and new software to exploit it. MeqTrees is designed to implement numerical models such as the RIME, and to solve for arbitrary subsets of their parameters. The technical goal of MeqTrees is to provide a tool for rapid implementation of such models, while offering performance comparable to hand-written code. We are also pursuing the wider goal of increasing the rate of evolution of radio astronomical software, by offering a tool for rapid experimentation and exchange of ideas. MeqTrees is implemented as a Python-based front-end called the meqbrowser, and an efficient (C++-based) computational back-end called the meqserver. Numerical models are defined on the front-end via a Python-based Tree Definition Language (TDL), then rapidly executed on the back-end. The use of TDL facilitates an extremely short turn-around time for experimentation with new ideas. This is also helped by unprecedented visualization capabilities for all final and intermediate results. A flexible data model and a number of important optimizations in the back-end ensures that the numerical performance is comparable to that of hand-written code. MeqTrees is already widely used as the simulation tool for new instruments (LOFAR, SKA) and technologies (focal plane arrays). It has demonstrated that it can achieve a noise-limited dynamic range in excess of a million, on WSRT data. It is the only package that is specifically designed to handle what we propose to call third-generation calibration (3GC), which is needed for the new generation of giant radio telescopes.Comment: 15 pages; 14 figure

    Modeling Affect Dynamics:State of the Art and Future Challenges

    Get PDF
    The current article aims to provide an up-to-date synopsis of available techniques to study affect dynamics using intensive longitudinal data (ILD). We do so by introducing the following eight dichotomies that help elucidate what kind of data one has, what process aspects are of interest, and what research questions are being considered: (1) single- versus multiple-person data; (2) univariate versus multivariate models; (3) stationary versus nonstationary models; (4) linear versus nonlinear models; (5) discrete time versus continuous time models; (6) discrete versus continuous variables; (7) time versus frequency domain; and (8) modeling the process versus computing descriptives. In addition, we discuss what we believe to be the most urging future challenges regarding the modeling of affect dynamics

    Casimir forces in modulated systems

    Full text link
    For the first time we present analytical results for the contribution of electromagnetic fluctuations into thermodynamic properties of modulated systems, like cholesteric or smectic liquid crystalline films. In the case of small dielectric anisotropy we have derived explicit analytical expressions for the chemical potential of such systems. Two limiting cases were specifically considered: (i) the Van der Waals (VdW) limit, i.e., in the case when the retardation of the electromagnetic interactions can be neglected; and (ii) the Casimir limit, i.e. when the effects of retardation becomes considerable. It was shown that in the Casimir limit, the film chemical potential oscillates with the thickness of the film. This non-monotonic dependence of the chemical potential on the film thickness can lead to step-wise wetting phenomena, surface anchoring reorientation and other important effects. Applications of the results may concern the various systems in soft matter or condensed matter physics with multilayer or modulated structures.Comment: 13 page

    Interaction potentials for soft and hard ellipsoids

    Full text link
    Using results from colloid science we derive interaction potentials for computer simulations of mixtures of soft or hard ellipsoids of arbitrary shape and size. Our results are in many respects reminicent of potentials of the Gay-Berne type but have a well-defined microscopic interpretation and no adjustable parameters. Since our potentials require the calculation of similar variables, the modification of existing simulation codes for Gay-Berne potentials is straightforward. The computational performance should remain unaffected.Comment: 8 pages, 4 figure
    corecore