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ABSTRACT
Emotion dynamics are likely to arise in an interpersonal context. Standard methods to study
emotions in interpersonal interaction are limited because stationarity is assumed. This means that
the dynamics, for example, time-lagged relations, are invariant across time periods. However, this
is generally an unrealistic assumption. Whether caused by an external (e.g., divorce) or an internal
(e.g., rumination) event, emotion dynamics are prone to change. The semi-parametric time-varying
vector-autoregressive (TV-VAR) model is based on well-studied generalized additive models, imple-
mented in the software R. The TV-VAR can explicitly model changes in temporal dependency without
pre-existing knowledge about the nature of change. A simulation study is presented, showing that
the TV-VAR model is superior to the standard time-invariant VAR model when the dynamics change
over time. The TV-VAR model is applied to empirical data on daily feelings of positive affect (PA) from
a single couple. Our analyses indicate reliable changes in the male’s emotion dynamics over time, but
not in the female’s—whichwere not predictedbyher ownaffect or that of her partner. This application
illustrates the usefulness of using a TV-VAR model to detect changes in the dynamics in a system.

1. Introduction

Emotions are not stable entities, but states that fluctuate
over time. These patterns of fluctuations are often studied
within a single individual (Boker & Nesselroade, 2002;
Kuppens, Stouten, & Mesquita, 2009; Kuppens et al.,
2012; Lebo & Nesselroade, 1978), even though emotions
are likely to arise in an interpersonal context, such as a
romantic relationship (Keltner & Haidt, 1999; Larson &
Almeida, 1999; Parkinson, 1996). As individuals inter-
act with each other, there is likely to be a transfer of
emotions—as well as behavior and cognition—back and
forth between the two people. Emotion dynamics can
thus be conceptualized as temporal interpersonal emo-
tion systems, in which the emotions of one individual in,
say, a couple, depend upon his or her own emotions and
the emotions of the partner (Butler, 2011).

Several methods have been used to study emotions in
interpersonal, or more specifically, dyadic interactions.
One such method is dynamic factor analysis. Dynamic
factor analysis combines factor analysis with multivariate
time series in order to account for the structure of the data
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as well as their time-related dependencies (Ferrer &
Nesselroade, 2003; Ferrer, 2006; Ferrer, Widaman, Card,
Selig, & Little, 2008; Ferrer & Zhang, 2009). Another
method that can take into account temporal depen-
dencies between the emotions of two individuals is
multilevel vector-autoregressive modeling and the related
random intercepts cross-lagged panel models (Bring-
mann et al., 2013; Bringmann, Lemmens, Huibers,
Borsboom, & Tuerlinckx, 2015; Hamaker, Kuiper, &
Grasman, 2015; Koval, Butler, Hollenstein, Lanteigne,
& Kuppens, 2015; Randall & Butler, 2013). In addi-
tion, such models can also be studied in the frequency
domain, instead of the standard time domain (Liu &
Molenaar, 2016; Sadler, Ethier, Gunn, Duong, & Woody,
2009). Whereas these methods can model the emo-
tion dynamics in discrete time, differential equations
techniques allow one to model such dynamics in con-
tinuous time (e.g., Boker & Laurenceau, 2006; Felmlee &
Greenberg, 1999; Gottman, 2003; Steele & Ferrer, 2011).

A drawback of the above models is that they assume
stationarity. This means that both the mean of an
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emotion process and the temporal dynamics are assumed
not to change over time (Chatfield, 2003; Hamilton,
1994). However, based on theories of emotions and
empirical research on emotion dynamics, stationarity
is a rather strong assumption (Boker et al., 2011; Felm-
lee & Greenberg, 1999). Consider, for example, a life
changing event such as going through a divorce. It is only
natural that the emotional interaction between the two
individuals is different at the beginning of a marriage
than prior to, during, and after the divorce (Gottman,
1979; Gottman & Levenson, 1986; Gottman, Swanson,
& Swanson, 2002). There is empirical evidence showing
how the emotional exchange between individuals in a
couple changes toward negative interactions or toward
hardly any interaction at all before a divorce (Gottman
& Levenson, 1992; Gottman, Coan, Carrere, & Swanson,
1998). Such changes in the emotional interaction need
not happen over years or months, but can also take place
within short periods of time (Hsieh, Ferrer, Chen, &
Chow, 2010; Madhyastha, Hamaker, & Gottman, 2011).

Furthermore, empirical studies regarding emotion
dynamics within an individual have also shown that
emotion dynamics can change over time. This can be due
to both internal (e.g., negative thoughts) and external
(e.g., stressful event) factors. For example, a stressful event
such as speaking in public can lower emotional inertia
(Koval & Kuppens, 2012), that is, the overspill of an emo-
tion from one time point to the next (Kuppens, Allen, &
Sheeber, 2010; Suls, Green, & Hillis, 1998). In addition,
emotional inertia has been shown to change due to inter-
nal events. To illustrate, experiencing less or more intense
negative affect can lead to a change in emotional inertia
(Haan-Rietdijk, Gottman, Bergeman, & Hamaker, 2014).

Thus, in order to deal with nonstationarity in emo-
tional processes within dyads, new models are needed.
Examples of such new models include extensions of the
dynamic factor model with time-varying parameters
using a state space approach (Chow, Zu, Shifren, &
Zhang, 2011; Molenaar, De Gooijer, & Schmitz, 1992),
an extension of the (multilevel) vector-autoregressive
(VAR) model using threshold parameters representing,
for example, emotion dynamics under decreased and
increased negative affect (threshold autoregressive mod-
els; Haan-Rietdijk, Gottman, Bergeman, & Hamaker,
2014; Hamaker, Zhang, & Maas, 2009; Madhyastha,
Hamaker, & Gottman, 2011), and regime switching
models, in which different states of emotion dynamics
can be specified (Frühwirth-Schnatter, 2006; Hamaker,
Grasman, & Kamphuis, 2010; Stifter & Rovine, 2015).
Additionally, exploratory tools have been developed to
discover which aspects or periods of dyadic interactions
show similar patterns (Boker, Rotondo, Xu, & King, 2002;
Ferrer, Steele, & Hsieh, 2012; Hsieh, Ferrer, Chen, &

Chow, 2010). Such exploratory tools do not require as
many assumptions as standard methods, and therefore
are useful as a first step to discover and summarize
patterns in the data (Ferrer, 2016).

In this paper, we present an extension of the vector-
autoregressive model that uses time-varying parameters:
the semi-parametric time-varying vector-autoregressive
(TV-VAR) model. Because of its regression framework
and well-functioning default settings, the TV-VARmodel
is very easy to use. Our proposed approach can model
changes in the temporal dependency of emotions within
a dyad without pre-existing knowledge about the nature
of such changes. It further assumes that the change in
emotion dynamics is smooth instead of abrupt. The
TV-VAR model proposed here is based on well-studied
generalized additive models (GAMs; Hastie & Tibshirani
(1990), and is easily applicable, as it is implemented in
the freely available software R.

The TV-VAR model has its origins in econometrics
(Dahlhaus, 1997; Giraitis, Kapetanios, & Yates, 2014).
Recently, the TV-(V)AR has been introduced to psycho-
logical research, where it has been shown to be a very
powerful model for detecting changes in psychological
dynamics (Bringmann et al., 2017; Chow, Lu, Cohn, &
Messinger, 2017; Haslbeck & Waldorp, under review).
Here, we implement this modeling approach in the con-
text of dyadic interactions. We demonstrate its usefulness
for detecting and modeling smooth changes in dyadic
emotion dynamics through both a simulation study and
an empirical example.

The structure of the article is as follows: We first
outline the standard VAR model. Then we describe the
TV-VARmodel in detail and discuss the GAM estimation
method. To evaluate the performance of the TV-VAR
model under different conditions of change or no change
in comparison to the standard VAR model, we present
a simulation study. Next, we illustrate how the TV-VAR
model can extract the emotion dynamics underlying
dyadic interactions by applying it to empirical data
(Ferrer & Nesselroade, 2003). In the final section, we
discuss possible advantages and disadvantages of the
model and offer some concluding remarks. Example code
is given in the Appendix, demonstrating how TV-VAR
can be applied to empirical data.

2. Vector autoregressive model

To model temporal dynamics in emotions, a (form of)
vector autoregressive (VAR) model is typically fitted
to the data. The standard VAR model is a multivariate
regression model in which all the variables on the right
side of the equation are lagged values (in this case a lag
of 1: t − 1) of all the dependent variables. Consider, for
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example, a bivariate VAR model:

y1,t = β10 + β11y1,t−1 + β12y2,t−1 + ε1,t

y2,t = β20 + β21y1,t−1 + β22y2,t−1 + ε2,t . (1)

In a VAR model there are yi,t variables, where
i = 1, 2, . . . ,m is the number of variables (in this
case m = 2) and t is the time index (Brandt & Williams,
2007). Each dependent variable (y1,t , y2,t) is regressed
on its lagged values (y1,t−1, y2,t−1, respectively) through
the autoregressive parameters (β11 and β22). These
parameters capture the strength and direction of the
autoregressive effects of a variable on itself from one time
point to the next controlling for the cross-lagged relations.
As an example, consider negative affect (NA) for two indi-
viduals in a romantic relationship. Autoregressive effects
indicate to what extent each variable, NA of the male and
NA of the female, is predictive of itself over time (control-
ling for the partner’s NA score). A positive autoregressive
effect indicates that current levels of NA predict NA levels
at the next time point, such as the next day, depending on
the specific timemetric that is used (and again controlling
for the partner’s score). In addition, a positive autoregres-
sive effect indicates that the process is not very prone to
change, such that its values across time might only slowly
go back to baseline values. A negative autoregressive
effect, on the other hand, indicates a jigsaw pattern in the
sense that it predicts a fast changing process. That is, high
negative values at a given time point predict low values of
NA at the next time point, and the other way around.

Additionally, each dependent variable (y1,t , y2,t ) is
regressed on the lagged values of each of the other depen-
dent variables (y2,t−1, y1,t−1, respectively) through the
cross-lagged parameters β12 and β21. Cross-lagged effects
indicate the direction and strength of the effect a variable
has on other variables from one time point to the next
controlling for the autoregressive effects. Considering
again the example of a romantic relationship, NA expe-
rienced at one time is likely to be predicted by not only
one’s own NA at the previous time point (autoregressive
effect), but also by the partner’s NA (cross-lagged effect).
For example, if there is a negative cross-lagged effect from
themale to the female, his increased NA at one time point
predicts decreased NA values for the female at the next
time point (controlling for the female’s own previous NA
score). In contrast, a positive cross-lagged effect from the
male to the female indicates that if he has a high NA at
one time point she is also likely to experience an increase
in her NA values at the next time point.

Auto- and cross-lagged coefficients that are close to
zero indicate that there is no predictive value within and
between the variables. In such a case, for example, an
individual’s NA could not be predicted by his or her own
NA, nor by the partner’s NA.

In the VAR specification, the βi0 (i = 1 or 2) coef-
ficients represent the intercepts of the model. The
innovation terms ε1,t and ε2,t (also known as pertur-
bations or random shocks) are the part of the current
observations y1,t and y2,t that cannot be explained by the
previous observations (y1,t−1, y2,t−1). The innovations are
assumed to follow a white-noise process, meaning that all
innovation processes have a mean zero and a time invari-
ant symmetric positive definite covariance matrix that is
assumed to be a block diagonal. Note that because a block
diagonal is assumed, the equations in Equation (1) do not
have to be estimated simultaneously to obtain correct esti-
mates, but can be estimated with equation-by-equation
ordinary least squares (Brandt &Williams, 2007, p. 24).

The bivariate VAR model specified above can also be
rewritten in a more general vector form:

yt = β0 + B1yt−1 + εt , (2)

with

yt =
[
y1,t
y2,t

]
, β0 =

[
β10
β20

]
,B1 =

[
β11 β12
β21 β22

]
and

εt =
[

ε1,t
ε2,t

]
.

In its most generic form, a VAR model with lag p
amounts to

yt = β0 +
p∑

k=1

Bkyt−k + εt . (3)

Here, β0 denotes the vector of intercepts (βi0), yt−k is
a 1 × m vector of the kth lagged variables, Bk are m × m
matrices, containing the coefficients for the kth lag (βi1
to βm,mp arranged by lag), and εt are the innovations
collected in anm vector Brandt &Williams (2007).

Although a VAR model is suitable for modeling
temporal emotion dynamics, its standard specification
assumes stationarity and, thus, cannot capture changes in
the dynamics. In general terms, stationarity means that
the statistical properties of the data under study do not
change over time. In particular, strict stationarity assumes
that the joint distributions of both time series are time
invariant, whereas weak or covariance stationarity only
assumes the means and the covariance structure of the
process to be invariant over time (Chatfield, 2003; Lütke-
pohl, 2007). In most psychological models, including
VAR, only covariance stationarity is required. In practice,
to ensure that a VAR(p) model is covariance stationary,
we first need to re-write it as a VAR(1) model, which
requires stacking yt , yt−1, to yt−p+1 in a single vector, and
regressing it on a vector that stacks yt−1, yt−2 to yt−p.
In this new model, we have a block matrix that has the
original B1, B2, to Bp matrices as the first row, and a diag-
onal of identity matrices below this. If this block matrix
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has eigenvalues less than 1, the process is covariance
stationary (see for example, Hamiltion, (1994, p.259)).

3. TV-VARmodel

Because stationarity is often an unrealistic restriction
in emotion dynamics, a different model that does not
require the process to be stationary over time is needed.
The TV-VARmodel relaxes the stationary assumption by
letting the parameters of a VAR model, or more precisely
the β coefficients, to vary over time.

A (bivariate) TV-VAR model is defined as

y1,t = β10,t + β11,t y1,t−1 + β12,t y2,t−1 + ε1,t

y2,t = β20,t + β21,t y1,t−1 + β22,t y2,t−1 + ε2,t , (4)

or

yt = β0,t + B1,tyt−1 + εt , (5)

with

yt =
[
y1,t
y2,t

]
, β0,t =

[
β10,t
β20,t

]
,B1,t =

[
β11,t β12,t
β21,t β22,t

]
, and

εt =
[

ε1,t
ε2,t

]
.

Again, one can write a TV-VAR model with lag p in
its most general form as

yt = β0,t +
p∑

k=1

Bk,tyt−k + εt . (6)

As in the standardVARmodel, theβ0,t coefficients rep-
resent the intercept, whereas the strength and direction
of the autoregressive and cross-lagged effects are captured
by the coefficients Bk,t . However, as the t indicates, the
intercept and the direction and strength of autoregressive
and cross-lagged effects can now take different values
over time. Identifying the precise way in which these
coefficients vary over time is a data-driven process (the
estimation procedure is explained in the next section).
The innovation terms εt are still assumed to be stationary
with mean zero. Thus, the covariance matrix of the inno-
vations is not allowed to change structurally over time.

The TV-VAR model requires two assumptions. First,
although stationarity is no longer required in a TV-VAR
modal, the process still needs to be bounded in order to
get interpretable results. Statistically, this comes down
to local stationarity. More precisely, although the coeffi-
cients are allowed to vary over time, at each time point
t the process needs to be covariance stationary; hence,
the term local stationarity (Dahlhaus, 1997). Second, the
change of the process or interaction in a TV-VAR modal
is assumed to be smooth. Smoothness entails that the

functions of β0,t and Bk,t are continuous and have contin-
uous first and second derivatives. Thus, TV-VAR cannot
model abrupt changes such as sudden jumps in the data.

4. TV-VAR estimation

4.1. Generalized additivemodels

In order to allow the coefficients of a VAR model to
vary over time, we use the generalized additive modeling
(GAM) framework (see also Bringmann et al., 2017)
for a thorough discussion of the GAM approach in the
univariate case). GAMs build on general linear models
(GLMs). However, GAMs are more flexible than GLMs as
they do not require that the functional relation between
criterion and predictors is defined beforehand as a certain
parametric form (e.g., linear). In order to achieve this,
GAM estimates the functional relation locally instead
of globally. In global estimation, the function between
two variables is described with a mean or β coefficient.
In local estimation, used in GAM, the functional form
is estimated from the data using local estimators or
smoothers. The smoothers are then estimated for a
restricted range x and y repeatedly so that in the end the
whole range of x and y is covered. These estimates are
then aggregated by a line summarizing the relationship
between the variables over the whole range. In this way,
local estimators or smooth functions do not impose a par-
ticular functional form on the relationship between two
variables. Therefore, GAM estimation does not produce
a single parameter as is the case with linear modeling, but
the relationship between variables is summarized visually
in a plot of the estimated relationship (Keele, 2008). As
x can also represent time, the GAM approach makes it
possible to let the parameters vary over time.

GAMs can model coefficients both as in standard
regression (i.e., β0 and B1) and as nonparametric
(smooth) functions (i.e., β0,t and B1,t), and hence GAMs
are said to be semi-parametric (Keele, 2008; Wood,
2006). Although GAM is a more flexible framework
than GLM through the incorporation of nonparametric
smooth functions, it does assume additivity as in stan-
dard regression, meaning that the amount of change in
the dependent variable y caused by a unit increase in an
independent variable x does not depend on the values
of the other independent variables in the model. This
assumption ensures that GAMs can be interpreted in the
same way as multiple regression models (Keele, 2008).

4.2. Regression splines

There exist various ways to fit GAMs. In the method pro-
posed by Wood (2006), GAMs are based on a penalized
maximum likelihood approach using regression splines.
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Figure . An example of a cubic regression spline basis for the model yt = βt + εt . The basis functions for the smooth curve βt of a cubic
regression spline basis are shown. The first panel represents the data throughwhich the smooth curvewill be fitted. The knot locations are
shown as vertical lines. The first basis function is defined as R1(t ) = 1 and the other six basis functions (R2(t )–R7(t ) ) are spline-specific
basis functions. Thus, with six knots there are seven basis functions in total. Just as in standard regression, all basis functions Ri(t ) are
weighed by multiplying them with their corresponding αi coefficients. These weighted basis functions are then summed up, resulting in
the smooth curve β̂t (with CI) in the last panel at the bottom right where the black dots again represent the data.

In this approach, the time-varying β0,t and B1,t coeffi-
cients of the TV-VARmodel (the smooth terms) consist of
basis functions. For example, if we focus only on one time-
varying intercept, denoted β̂t , it can be represented as

β̂t = α̂1R1(t ) + α̂2R2(t ) + α̂3R3(t ) + · · · + α̂KRK (t ).
(7)

Here each smooth term has K known basis functions
R1(t ), . . . ,RK (t ) and K unknown regression coefficients
α̂1, . . . , α̂K , that have to be estimated. Additionally, t
represents the predictor variable (time in our case).
Summing up all the weighted basis functions (α̂) results
in the final curve for the smooth function (here β̂t , see
also Figures 1 and 2). The more basis functions a smooth
term has, the more flexible, “wigglier” and nonlinear the
smooth term becomes. Estimation of the optimal regres-
sion weights (i.e., α̂) is done using penalized iterative
reweighted least squares (Wood, 2000, 2006).

As a basis function, a polynomial basis (e.g., x0, x1,
x2, etc.) could be used. However, in order to capture
complicated nonlinear smooth terms, many of these

basis functions need to be added. This would quickly
lead to collinearity problems (Marra & Radice, 2010).
To circumvent this problem, regression splines can be
used as a basis. Regression splines are pieces of poly-
nomials that are joined smoothly at breakpoints called
knots (Hastie & Tibshirani, 1990). A common choice for
regression splines are piecewise cubic polynomials, which
are constrained to be continuous at the knot points and,
additionally, are constrained to have a continuous first
and second derivative (Fitzmaurice, Davidian, Verbeke,
& Molenberghs, 2008). It is important to point out that
although regression splines are segmented cubic polyno-
mials joined at the knots, the function evaluation is not
restricted to particular segments. Instead, there is an indi-
vidual basis function for every knot and each basis func-
tion evaluates every value of t in the data (see Figure 1).

In the analyses of the current paper, we use the default
regression spline basis of the GAM software: the thin
plate regression spline basis (Wood, 2003, 2006). In
contrast to cubic regression splines, where the basis func-
tions are associated directly with a knot location, the basis
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Figure . An example of a thin plate regression spline basis for the model yt = βt + εt . The basis functions for the smooth curve βt of
a thin plate regression spline basis are shown. The first panel represents the data through which the smooth curve will be fitted. The
next two panels represent the first two basis functions, which are defined as R1(t ) = 1 and R2(t ) = t . The other five basis functions
(R3(t )–R7(t )) are thin plate spline-specific basis functions. Just as in standard regression, all basis functions Ri(t ) are weighed by
multiplying them with their corresponding αi coefficients. These weighted basis functions are then summed up, resulting in the smooth
curve β̂t (with CI) in the last panel at the bottom right where the black dots again represent the data.

functions in the thin plate regression splines are not knot-
based in a conventional sense (see Figure 2). Instead, the
thin plate regression spline approach starts with one
knot per observation, using then an eigen-decomposition
approach to get the number of basis coefficients maxi-
mally accounting for the variance in the data. Addition-
ally, the basis functions are also no longer so sensitive
to the exact knot placement (for more information, see
Wood, 2003). Note also that in thin plate regression
splines, every basis function that is added is “wigglier”
than the previous basis function: for example, in Figure 2
basis function R7 is wigglier than R6. Different splines
often give similar smooth functions and, thus, the choice
of the spline basis is typically not crucial (Wood, 2006).

As stated previously, how complex or “wiggly” the final
smooth function (e.g., β̂t) becomes depends on the num-
ber of (regression spline) basis functions. By increasing
the number of basis functions, the final smooth functions
become more complex and “wiggly.” When using too few
basis functions, the curve will have too little curvature

and may not follow the data well. Too many basis func-
tions, on the other hand, will lead to interpolation of the
data points and will result in overfitting (Andersen, 2009;
Keele, 2008). Thus, one crucial problem is finding the
right number of basis functions.

One approach to find the right number of basis func-
tions involves using the penalized likelihood approach
(Wood, 2006). The idea behind this method is to take
more basis functions than expected to be necessary and
control the function’s smoothness by adding a wiggli-
ness penalty (Wood, 2006). This penalty decreases the
influence of the highly “wiggly” components of the basis
functions. To determine the wiggliness penalty that
leads to optimal smoothness of the function, a general-
ized cross-validation technique (GCV; Golub, Heath, &
Wahba, 1979) can be used. The lowest GCV score repre-
sents the penalty that is optimal in the sense that it leads
to the best trade-off between underfitting and overfitting.

All of the techniques described in this section are
implemented in the mgcv package in R (Wood, 2006).
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Besides the type of spline bases, one only has to define
enough basis functions, the default being 10 basis
functions. The output contains the estimated smooth
functions and a GCV score. The GAM procedure in the
mgcv package also provides ameasure of nonlinearity and
95% Bayesian credible intervals (CIs; see Wood, 2006).
The measure of nonlinearity is the effective degrees of
freedom (edf). An edf of one indicates a linear effect,
and the higher the edf, the more “wiggly” the estimated
smooth function (Shadish, Zuur, & Sullivan, 2014). The
number of basis functions should be well below the
maximum possible edf for the smooth function (or term)
of interest (Wood, 2006). When this is not the case,
the next step is to re-fit the model with a larger num-
ber of basis functions (e.g., double). If the reported edf
increases substantially with this operation, this is a sign
that even more basis functions are needed. Furthermore,
the ref.df is given. This stands for the reference degrees
of freedom and is an alternative measure of degrees of
freedom, used for hypothesis testing. The 95% Bayesian
credible intervals around the smooth curve reflect the
uncertainty of the smooth function (for more details,
see Wood, 2006).1

Besides visually inspecting the plots of the intercept,
autoregressive, and cross-lagged smooth functions to
detect changes in the functions over time, it is possible to
calculate fit indices such as the BIC and AIC for model
comparison. Note that the BIC and AIC calculated for
these penalized models are not maximizing the actual
likelihood but penalized likelihood. Furthermore, to
calculate the AIC and BIC, the edf is used instead of
the actual number of parameters (see for more detailed
information Hastie & Tibshirani, 1990). Following the
results of a previous simulation study (Bringmann et al.,
2017), we recommend to use only the BIC for model
comparison when having over 100 time points. In these
circumstances, the BIC functions well and can indicate
whether a standard VAR model or one of the time-
varying models fits the data better. Under 100 time
points, neither the AIC nor the BIC performs particularly
well in selecting the true model (i.e., whether the process
under study is time-varying or time-invariant). The AIC
will select the time-varying models too often, and the
BIC will select the time-invariant (standard VAR) model
too often. In this case, we recommend to use both the
AIC and BIC, and to see if they converge to the same
model. For more detailed information on model compar-
ison between TV-(V)AR and standard (V)AR models,
(see Bringmann et al., 2017).

 It has recently also become possible to estimate generalized additivemodels
in a fully Bayesian way (Wood, ).

5. Simulation study

To evaluate the performance of the TV-VAR model, we
carried out a simulation study comparing a standard
bivariate VAR to a bivariate TV-VARmodel under differ-
ent conditions of change using R,R (R Core Team, 2017).
We investigated in which cases a TV-VAR model should
be preferred over a standard VAR model by generating
data from bothmodels and evaluating their performances
using the mean square error (MSE) and coverage prob-
ability of the 95% credibility intervals. The population
parameters were based on previous studies (see, for exam-
ple, Bos, Hoenders, & Jonge, 2012; Wigman et al., 2015).

5.1. Set up of the simulation study

There were two main conditions:
1. The data are generated with a standard time-

invariant VAR model in which the parameters do
not change over time (see also Figure 3A):

y1,t = 1 + 0.6y1,t−1 + 0y2,t−1 + ε1t

y2,t = 1 + 0.2y1,t−1 + 0.3y2,t−1 + ε2t . (8)

2. The data are generated with a TV-VARmodel (see
also Figure 3B and 3C):

y1,t = β10,t + β11,t y1,t−1 + β12,t y2,t−1 + ε1,t

y2,t = β20,t + β21,t y1,t−1 + β22,t y2,t−1 + ε2,t . (9)

Parameters of the TV-VAR model could vary either
as a linear function (Figure 3B) or as a sine function
(Figure 3C). All parameters varied simultaneously over
time. Both generating functions (the linear and the sine)
varied fromzero to amaximum(absolute) value (M). This
value corresponded to the parameter values in the stan-
dard VAR model of Equation (8). In the case of a linear
change, the time-varying parameter (e.g., β10,t) was then
simulated according to a linear function β10,t = t · M/n,
and in the sine case, the parameter was simulated accord-
ing to a sine function β10,t = M · sin( 2πtn ), where n is the
total number of time points,M is the maximum absolute
value, and ti denotes the time points i = 1, . . . , n.

In Figures 6 and 7, the line and tilde symbols represent
how the parameters in the TV-VAR model changed
over time (i.e., in a linear or sine way), the number in
parentheses being the maximum absolute value of the
time-varying parameter. For example, β10,t varied as a
linear function, the starting point being 0 and the end
point being 1. As another example, parameter β22,t varied
as a sine function with the peak values being 0.3 and
−0.3. Note that β12,t did not vary over time as in this
case the parameter value was 0. The innovations εt were
simulated as a white-noise process, with the mean 0 and
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Figure . The three data-generating functions.

the following covariance matrix �:

εt ∼ MvN
{[

0
0

]
,

[
1
0.2 1

]}
. (10)

Besides the condition time-invariant/time-varying, we
also varied the number of time points in the data (N =
{61, 80, 100, 150, 200, 250, 300, 400, 1000}). In the last
condition, we varied the number of basis functions: In
addition to the default setting of 10 basis functions per
smooth curve, we also halved and doubled the number of
basis function, resulting in three extra conditions: 5, 10,
and 20 basis functions. Note that for estimating a TV-VAR
model with 2 variables and 20 basis functions, at least 61
time points are needed, as otherwise the model has more
coefficients than data (e.g., 20 basis functions for each
parameter (β10,t , β11,t , and β12,t) leads to 60 coefficients
per equation). Every condition was replicated 1000 times.

5.2. Estimation and evaluation

After the data were generated (with a VAR or TV-VAR
model), they were fitted with (1) a VAR model and (2) a
TV-VAR model using a thin plate regression spline basis
using 5, 10 (the default setting), or 20 basis functions.

To evaluate the performance of the VAR and TV-VAR
models, we calculated the average of the mean squared
errors (MSEs) across the R = 1000 replications per con-
dition. The MSE for a single time-varying coefficient
can be defined as 1

n
∑n

t=1(θ̂t − θt )
2, where θ̂t represents

the estimated value at time point t , θt the true value at
time point t , and n is the number of time points. Any of
the parameters (i.e., β0,t and B1,t) can take the role of θt .
Additionally, a coverage probability was calculated, which
is the proportion of time that the true value is captured by
the confidence intervals in case a VAR model was fitted,
or (Bayesian) credible intervals in case a TV-VAR model
was fitted.

5.3. Results of the simulation study

When the dynamics of the data were time-invariant (i.e.,
generated by a VAR model), the VAR model always did
better (i.e., had a lower MSE value) than the TV-VAR
model. For example, the relative efficiency or MSE ratio
(i.e., MSE TV-VAR / MSE VAR) was around 7 : 1 with
61 time points, meaning that the MSE of the TV-VAR
model was seven times higher than that of the VAR
model. Importantly, however, not only the MSE values
of both models in general, but also the MSE ratio steeply
decreased with more time points, reaching around 2.5 : 1
with 1000 time points (see Figure 4). Moreover, even
though the coverage probabilities were higher for the
VAR model, from 200 time points on the coverage prob-
abilities for the TV-VAR model reached good results
with coverages over 90% (see Figure 5). Additionally, it is
clear that when the number of time points is low, below
200, for example, having less basis functions (5 versus 10
or 20) results in more reliable estimates. This suggests
that the penalization on the “wiggliness” of the smooth
functions does not work ideally with a low number of
time points. With more than 300 time points, the number
of basis functions does not influence the results crucially
anymore.

When the data were generated by a TV-VAR model as
having time-varying dynamics, the TV-VAR model had
in almost all cases a lower MSE value than the standard
VAR model.2 A TV-VAR model had always a better fit to
the data when the change was pronounced, that is, when
the absolute maximum value was high and the parameter
changed as a sine instead of a linear function. In case
of a linear change, the TV-VAR model detected change
better than a VAR model from about 100 time points on
(see Figure 6). In contrast, the coverage probabilities for
the TV-VAR model were always better than for the VAR

 Note that theMSE values sometimes seem to converge to exactly zero. This is
not the case: with  time points the estimates of, for example, the TV-VAR
model get very precise, with MSE values around ., but the values do not
reach zero.
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Figure . Average MSE values for both the TV-VAR (with , , and  basis functions) and the VAR model. The data were generated by
the VAR model. A lower MSE value entails a better recovery of the true coefficient values. The number next to the β indicates its value.

model regardless of the process of change. This difference
increased as the number of time points increased. Impor-
tantly, the coverage probability of the TV-VAR model
was in all cases above 90%, and this was the case already
with 100 time points (see Figure 7). Also here the number
of basis functions somewhat influenced the results when
there were less than 150 time points. However, in most
settings these differences were negligible.

In conclusion, it seems that when it is suspected that
time-varying dynamics in the data are present, a TV-VAR
model is a preferable model from about 100 time points
on. Furthermore, even if the dynamics are time-invariant,
with at least 200 time points, a TV-VARmodel gives good
results.

6. Empirical example

6.1. Description

In this section, we apply our proposed approach to
empirical data from two individuals in a dyad.3 In

 The dyad was selected from a larger pool of dyads. The criteria for selecting
the couple were the availability of at least  time points and clearly time-
varying parameters when estimating a TV-VAR model.

particular, to keep the example parsimonious, we focus
on the feelings of positive affect (PA) in one couple that
completed a daily questionnaire on their affect for 91
consecutive days (Figure 8; for more information see
Ferrer, Widaman, Card, Selig, & Little, 2008; Ferrer,
Steele, &Hsieh, 2012). Every day during the study period,
the two individuals in the couple rated items representing
emotion adjectives from the Positive and Negative Affec-
tive Schedule (PANAS; Watson, Clark, & Tellegen, 1988)
responding to the instructions “Indicate to what extent
you have felt this way today” on a 5-point likert scale,
ranging from1 (very slightly or not at all) to 5 (extremely).
The 10 items representing positive affect (PA) included
interested, excited, strong, enthusiastic, proud, inspired,
determined, attentive, active, and alert. The PA score
was based on the mean of these 10 items. The data are
available on the website of the journal and the R-code to
replicate the analyses can be found in the Appendix.

6.2. Analysis

We carried out analyses using the TV-VAR model
to study: (a) changes over time in PA for each indi-
vidual in the dyad, and (b) the extent to which each
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Figure . Average coverage probabilities (CP) in% for both the TV-VAR (with , , and  basis functions) and the VAR model. The data
were generated by the VAR model. A higher value entails capturing the true coefficient values better. The number next to the β indicates
its value. CIs for both models were %.

individual’s PA was affected by the partner’s PA. The
model of interest for our analyses is a model in which
all terms are time-varying parameters (i.e., model 1 in
Table 1):

PAmalet = β10,t + β11,tPAmalet−1 + β12,tPAfemalet−1 + ε1,t

PAfemalet = β20,t + β21,tPAmalet−1 + β22,tPAfemalet−1 + ε2,t .

(11)

This model was compared with alternative specifica-
tions, in other words, simpler models in which some or
all of the parameters were time invariant (see model 2
until 8 in Table 1).

Model selection was based on three criteria: (1) sig-
nificance level of the smooth parameters, (2) visual
inspection of change in the parameters over time, and (3)
AIC and BIC fit indices. For all models, the innovations
ε1,t and ε2,t were evaluated, and tests indicated a lack of
autocorrelation over time as well as homogeneity and a
normal distribution (see, for example, the innovations
of the first model depicted in Figure 9). We used the
standard number of basis functions 10, and as a check,
doubled the number of basis functions to 20 as well.

Both settings gave highly similar results, and therefore 10
basis functions were used in the final model (see also the
R-code in the Appendix).

6.3. Results

Both the time-varying and the standard VAR model
indicated that all the parameters pertaining to the male’s
PA were statistically significant, whereas those for the
female’s PA were not. That is, in the emotion system of
this dyad, only the male’s PA could be predicted over
time. For example, the TV-VAR model, as depicted in
model 1 and Equation (11), showed that the smoothing
parameters for the male’s PA had p-values < 0.024 and
were thus relevant for predicting his PA.

Regarding the question whether the parameters were
time-varying or time-invariant, the AIC indices indicated
that model 1, in which all parameters are time-varying,
was the best model. In contrast, the BIC indicated the
opposite: model 8, a standard VAR model where all the
parameters are time-invariant, was the best fitting model
(see Table 2).4

 This was not a surprising result given simulations done in a previous study
Bringmann et al. (), indicating that the AIC tends to choose time-varying
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Figure . Average MSE values for both the TV-VAR (with , , and  basis functions) and the VAR model. The data were generated by
the TV-VAR model. A lower MSE value entails a better recovery of the true coefficient values. The number next to the β indicates the
maximum absolute value of β and the symbols describe how β changed over time.

Interestingly, the second best model indicated by the
AIC and BIC fit indices was in both casesmodel 3. In this
model, the intercept and cross-lagged effect (female’s PA)
were time-varying, whereas the autoregressive parameter
(male’s PA) was not time-varying, but fixed to 0.25 with a
p-value of 0.013. However, the differences in AIC values
betweenmodel 1 andmodel 3orBIC values betweenmodel
8 andmodel 3were so small that themodels can be seen as
having an equivalent fit. Visual inspection of the smooth-
ing parameters (see Figure 10) showed that, whereas the
cross-lagged function is clearly varying over time, the
autoregressive function (inertia) cannot be disregarded as
a straight time invariant function, as it does not clearly go
up or down at any point in time. In order to control for
effects that are only due to differences in emotional vari-
ability, we also standardized the results (mean = 0 and
variance = 1; see, for example, Bulteel et al., 2016). These
analyses led to the same results and conclusions.

Thus, based on significance testing, visual inspection
and fit indices, model 3 was chosen as the most plausible

models as the best model whereas the BIC indicates often time-invariant
models as the best fitting model, especially when the number of time points
is relatively small.

representation of the data. This means that the male
in this couple had a stable emotional inertia over time,
that is, he showed some spillover effects in his positive
emotions from one day to the next. Furthermore, during
the first part of the study, such emotions appeared to be
mainly influenced by his own emotions. Halfway through
the study, however, his emotions were also influenced
by those of his female partner, but such effects were in
the opposite direction. In other words, when her positive
emotions were low, his tended to be higher the next day,
and the other way around. Thus, a clear change in the
dynamics between the partners was apparent in these
data (see also Figure 10).

Whereas Figure 10 only represents the results of the
TV-VAR model, it is also helpful to visually compare the
results of a standard VAR model with those of a TV-VAR
model. This is done in Figures 11 and 12, which are
conceptual representations of how emotion dynamics
are modeled in VAR and TV-VAR models, inspired
by the network approach (see, for example, Borsboom
& Cramer, 2013) and path analysis (see, for example,
Loehlin, 2004). Figure 11 illustrates the VAR model,
where the dynamics within and between the male and
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Figure . Average coverage probabilities (CP) in% for both the TV-VAR (with , , and  basis functions) and the VAR model. The data
were generated by the TV-VAR model. A higher value entails capturing the true coefficient values better. The number next to the β

indicates the maximum absolute value of β and the symbols describe how β changed over time. CIs for both models were %.
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Figure . Daily positive affect (PA) scores for a male and a female involved in a romantic relationship.
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Table . The eight different models to select from for male and female positive affect.

Model Model specification

Model 1 yt = β0,t + B1,tyt−1 + εt with yt = [ y1,t
y2,t

]
β0,t = [ β10,t

β20,t

]
B1,t = [ β11,t β12,t

β21,t β22,t

]
εt = [ ε1,t

ε2,t

]

Model 2 yt = β0 + B1,tyt−1 + εt with yt = [ y1,t
y2,t

]
β0 = [ β10

β20

]
B1,t = [ β11,t β12,t

β21,t β22,t

]
εt = [ ε1,t

ε2,t

]

Model 3 yt = β0,t + B1,tyt−1 + εt with yt = [ y1,t
y2,t

]
β0,t = [ β10,t

β20,t

]
B1,t = [ β11 β12,t

β21 β22,t

]
εt = [ ε1,t

ε2,t

]

Model 4 yt = β0,t + B1,tyt−1 + εt with yt = [ y1,t
y2,t

]
β0,t = [ β10,t

β20,t

]
B1,t = [ β11,t β12

β21,t β22

]
εt = [ ε1,t

ε2,t

]

Model 5 yt = β0 + B1,tyt−1 + εt with yt = [ y1,t
y2,t

]
β0 = [ β10

β20

]
B1,t = [ β11,t β12

β21,t β22

]
εt = [ ε1,t

ε2,t

]

Model 6 yt = β0 + B1,tyt−1 + εt with yt = [ y1,t
y2,t

]
β0 = [ β10

β20

]
B1,t = [ β11 β12,t

β21 β22,t

]
εt = [ ε1,t

ε2,t

]

Model 7 yt = β0,t + B1yt−1 + εt with yt = [ y1,t
y2,t

]
β0,t = [ β10,t

β20,t

]
B1 = [ β11 β12

β21 β22

]
εt = [ ε1,t

ε2,t

]

Model 8 yt = β0 + B1yt−1 + εt with yt = [ y1,t
y2,t

]
β0 = [ β10

β20

]
B1 = [ β11 β12

β21 β22

]
εt = [ ε1,t

ε2,t

]

Table . Time-varying VAR model selection for PA of the male .
Lowest fit indices are made bold.

Model AIC BIC

Model  165.523 .
Model  . .
Model  . .
Model  . .
Model  . .
Model  . .
Model  . .
Model  . 188.813

the female are time-invariant, whereas Figure 12 shows
results of the TV-VARmodel, where the interdependence
in the dyad does change over time.

7. Discussion

Emotions arise in a social context. Very often they are
elicited in the setting of interpersonal interactions, such
as a dyad, the smallest possible group.While most models
used to study these emotion dynamics assume station-
arity, this is often an unrealistic assumption: Whether
caused by an external event (e.g., divorce), or an internal
force (e.g., rumination), emotion dynamics are prone to
change.

In this article, we presented the TV-VAR, a model for
exploring emotion dynamics and their changes over time,
and showed its usefulness to examine dyadic interactions.
Through a simulation study we demonstrated that, when
the dynamics change smoothly over time, the TV-VAR

Figure . Fitted values versus innovations of positive affect (PA) for both male and female. The innovations were homogenous and
normally distributed.
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Figure . This figure shows the parameters of model  (Equation ()) for positive affect (PA) of the male and female. In model  all
parameters were allowed to vary over time as smooth functions. The upper panel indicates, from left to right: () the intercept function,
() the autoregressive function (or inertia) of PA of the male, and () the cross-lagged function (the effect of PA of the female on PA of the
male). The lower panel has the same structure, but represents PA of the female, which could not be significantly predicted by her own
PA nor the PA of her partner. Note that model  would result in the same figure, except for β11,t and β21,t , which in model  are constants
of . and ., respectively.

model was superior to the standard time-invariant VAR
model. Moreover, the results indicated that when the
data were actually time-invariant, with at least 200 time
points, the estimations of the TV-VAR model were still
satisfactory.

We also applied the TV-VAR model to empirical
data consisting of positive daily affect ratings from two
individuals in a romantic relationship. In comparing the
stationary VAR model to the TV-VAR model, we found
evidence that the emotion dynamics within the couple
varied over time. Specifically, we found that both the VAR
and the TV-VAR model showed that the female’s positive
affect was not influenced by her own affect, nor by that of
her male partner. However, for the male’s positive affect,
the results from the models differed. Whereas the VAR

model indicated that the female’s positive affect always
influenced the male’s, the TV-VAR model showed that
her positive affect did not initially influence his posi-
tive affect, but such influence became evident halfway
through the study. These results highlight the importance
of using a TV-VAR model to identify changes in the
dynamics in a system. For example, had stable autore-
gressive or cross-lagged effects been assumed, the change
in dynamics would have been overseen.

The TV-VAR model is also applicable in other
contexts. In fact, in all situations in which temporal
dynamics can possibly alter over time, a TV-VAR model
is potentially useful. For example, in the increasingly
popular network approach to psychopathology, the net-
works are often inferred with a standard VAR model

Figure . Conceptual representation of the VARmodel for positive affect (PA) of the male and the female. In the VARmodel the dynamics
are not allowed to change over time.
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Figure . Conceptual representation of the TV-VAR model for positive affect (PA) of the male and the female. In the TV-VAR model, the
dynamics are allowed to change over time. In this dyad, the dynamics did indeed change. There was initially no effect of the female’s PA
on the male’s PA, but this cross-lagged effect appeared halfway through the study (see the thin red arrow) and got stronger over time
(see the thick red arrow).

(Borsboom & Cramer, 2013; Bringmann et al., 2016;
Fried et al., 2017; McNally, 2016; Pe et al., 2015; Wigman
et al., 2015). However, many hypotheses underlying the
network perspective involve change in the temporal
dynamics. For instance, in the area of psychopathology,
an increase in autocorrelation of the emotion dynamics,
referred to as critical slowing down, is assumed to be
an early warning for a transition into depression (van
de Leemput et al., 2014). Translated to network theory,
it is assumed that the network (i.e., autoregressive and
cross-lagged parameters) gets more dense or strongly
connected when a person transits to depression (Cramer
et al., 2016). Whereas a VAR model would be unable
to detect such shifts, a TV-VAR model could help to
discover these important transitions.

An additional advantage of the TV-VAR model is that
it can be used to detect nonstationarity. Even though there
are tests to check for several kinds of stationarity (e.g.,
Dickey & Fuller, 1979), there is no direct test that checks
for nonstationarity due to changes in the covariance
structure (i.e., autoregressive and cross-lagged effects).
Because the TV-VAR model can detect both dynamics
that do and do not change over time, it can be used as
an exploratory tool to check for nonstationarity due to
changes in the covariance structure. Simultaneously, it can
indicate whether trends in the data are present. Addition-
ally, the TV-VAR model immediately captures how the
covariance structure and trends in the data vary over time.

In this paper, we focused on the simplest TV-VAR
model: a bivariate lag-1 model. A fruitful extension
would be to include more variables and lags. More
complex models, however, bring issues such as inter-
pretability and the identification of false positive relations
(e.g., Costantini et al., 2015; Rasmussen & Bro, 2012;
Tibshirani, 1996). Future research should aim at devel-
oping regularization techniques for TV-VAR models in
order to enhance model interpretability and to decrease
the number of spurious connections (see, for example,
Haslbeck &Waldorp, under review).

An important limitation of the TV-VAR model is that
a relatively large number of time points (around 100) are
needed in order to get reliable estimates. For physiological
measurements (e.g., heart rate activity) such numbers are
readily available. However, although self-report studies
with a large number of time points are becoming more
common,most such studies still collect far fewer than 100
time points (Rot, Hogenelst, & Schoevers, 2012; Trull &
Ebner-Priemer, 2013). Furthermore, the TV-VAR model
assumes the change to be gradual and abrupt changes
cannot be identified. Such abrupt changes can bemodeled
using regime switching models (Hamaker et al., 2010),
and future research should combine regime switching
models with TV-VARmodels in order to enablemodeling
both abrupt and gradual changes.

Additionally, as we estimate the TV-VAR model
equation-by-equation, we are not explicitly estimating
the innovation covariance. Note however, that this does
not mean the model is based on the assumption that the
covariance between the innovations is zero. In fact, it
might very well be nonzero due to: (a) effects the vari-
ables have on one another at shorter intervals (i.e., lags),
and (b) omitted variables that affect both variables (i.e.,
unobserved common causes). Thus, further development
of techniques that allow us to study these innovation
covariances can be of great interest.

Another limitation of the TV-VAR model is its idio-
graphic approach. Future research should explore new
ways to go beyond a single dyad, for example, by using a
multilevel or a clustering approach. A multilevel version
of the TV-VAR model would allow for estimating both
intra- and inter-individual effects (Bringmann et al., 2013;
Haan-Rietdijk, Gottman, Bergeman, & Hamaker, 2014;
Schuurman, Ferrer, Boer-Sonnenschein, & Hamaker,
2016; Shiyko, Lanza, Tan, Li, & Shiffman, 2012; Snijders
& Kenny, 1999; Winter &Wieling, 2016). A disadvantage
of the multilevel approach, however, is that the individual
effects are assumed to be drawn from a single distribution
(usually the multivariate normal), limiting the amount
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of heterogeneity over individuals or dyads. In contrast,
in a clustering approach, for every individual or dyad a
separate model is estimated, making this approach very
flexible. Clustering could then be conducted on the shape
of the autoregressive and cross-lagged effects within the
dyads (for a similar approach, see Heylen, Verduyn, Van
Mechelen, & Ceulemans, 2015). Such clusters could be
then meaningfully related to other dyad characteristics,
such as relationship satisfaction, relationship duration, or
personality traits of the partners. A disadvantage of the
clustering approach is that more time points per individ-
ual are needed than with a multilevel approach, and that
most clustering models have the unrealistic assumption
of a perfect within-cluster homogeneity (however, an
exception is De Roover, Ceulemans, Timmerman, &
Onghena, 2013).

In the context of dyadic research, it is common practice
to test for differences in autocorrelation or cross-lagged
effects. A commonly used dyadic model, for instance, is
the actor-partner model with two time points (Kenny &
Cook, 1999; Kenny & Ledermann, 2010). In this model,
hypotheses about the equivalences in “actor” (autoregres-
sive) or “partner” (cross-lagged) effects can be tested by
putting constraints on themodel as themodel is estimated
in one go (for example, in a structural equation frame-
work). The TV-VAR model, although more elaborated
and flexible, has the limitation that the model is estimated
separately for the two dyads under study. Although direct
testing is not possible, one can compare “actor” or
“partner” effects in an exploratory way, for example, by
collating the standardized effect of interest of, in our case,
the male and the female in one plot. As a preliminary test
one could examine the credible intervals. If, for instance,
the point estimate of the cross-lagged regression coeffi-
cient from the male to the female lies outside the credible
interval for the cross-lagged coefficient from the female to
the male, this is evidence for these effects being different.

The aim of this paper was to introduce the semi-
parametric TV-VAR model into research on dyadic
interactions and psychological research in general. We
hope to have shown that the TV-VAR model is easy to
apply and can detect and capture changing dynamics
without prior knowledge of the nature of the change.
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Appendix: R-code

###############################################################
################# General information #########################
###############################################################
# R-CODE for the manuscript BRINGMANN ET AL. 2018,
# Multivariate Behavioral Research.
# Title: Modeling nonstationary emotion dynamics in dyads using a
# semi-parametric time-varying vector-autoregressive model.

# The files needed are:
# data.txt

#%############################################%#
#%##### Installing the libraries #####%#
#%############################################%#
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# Before you start you have to install and load the libraries below.

library(mgcv)# version 1.8-15
library(quantmod)# version 0.4-0

# Please make sure all files are in the same working directory
# and that you have set your working directory to source file location.
getwd()
ls() # Here you can see which files are in your current working directory.

#%############################################%#
#%##### Loading the data #####%#
#%############################################%#

data_subset<-read.table("data.txt", header=T,stringsAsFactors=F)

head(data_subset)#A first look at the data
# The first column represents the time points.
# The second column represents the positive affect (PA) of the male.
# The third column represent the positive affect (PA) of the female.

#%############################################%#
#%##### Analyzing the data with TV-VAR #####%#
#%############################################%#

tt=1:(dim(data_subset)[1])

# Here you simply lag your variables
pamL=Lag(as.numeric(data_subset$pam,1))# Lagging PA of the male
pafL=Lag(as.numeric(data_subset$paf,1))# Lagging PA of the female

# The actual TV-VAR analyses where all the parameters are time-varying:
# the intercept (s(tt)),
# the autoregressive s(tt,by=pamL) and
# cross-lagged parameter s(tt,by=pamf).

k=10#Here you can choose the number of basis functions
#It is clear from the edf and Ref.df that 5 basis functions is too few.
#The difference between 10, 15 and 20 basis functions is, however, negligible.

gam1<-gam(as.numeric(pam)˜s(tt,k=k)+s(tt,by=pamL,k=k)+s(tt,by=pafL,k=k),
data=data_subset)
gam2<-gam(as.numeric(paf)˜s(tt,k=k)+s(tt,by=pamL,k=k)+s(tt,by=pafL,k=k),
data=data_subset)

# Without the smoothing function s(tt,...) the parameters would be time-
invariant
# as in standard regression.
# See also the paper and r-file of Bringmann et al. 2016
# "Changing dynamics: TV-AR models using generalized additive modeling"
# in Psychological Methods.
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summary(gam1) #Predictability male PA
# The summary shows that all of the time-varying parameters are significant:
# Approximate significance of smooth terms:
# edf Ref.df F p-value
# s(tt) 1.00 1.000 8.087 0.00562 **
# s(tt):pagmL 2.00 2.000 3.925 0.02355 *
# s(tt):pagfL 5.65 6.724 3.480 0.00303 **

# To see how the intercept, autoregressive and cross-lagged effects change over
# time, we would have to plot the functions (see next section).
# The effective degrees of freedom (edf) gives us information on
# how wiggly the smooth function is.
# The edf of the autoregressive smooth function has an edf of 2,
# and could indicate either a straight time-invariant line or a linear
increase.
# The cross-lagged effect is clearly more wiggly and has an edf of over 5.

summary(gam2) #Predictability female PA
# The summary shows that none of the time-varying parameters are significant:

# Approximate significance of smooth terms:
# edf Ref.df F p-value
# s(tt) 5.836 6.731 0.785 0.600
# s(tt):pagmL 2.000 2.000 0.359 0.700
# s(tt):pagfL 4.735 5.436 0.875 0.482

# This can also be seen in the plots.
# There is always a zero is included in the CI:
plot(gam2, select=2,ylim=c(-1,1),rug=F,xlab="Days",

ylab=substitute(paste("PA male",italic("(t-1)"),
"on PA female",italic("(t)"))))

plot(gam2, select=3,ylim=c(-1,1),rug=F,xlab="Days",
ylab=substitute(paste("PA female",italic("(t-1)"),

"on PA female",italic("(t)"))))

#%#############################################%#
#%##### Figure of the main results in the paper #
#%#############################################%#

pdf("PA_FigureTVVAR.pdf",w=8.42,h=5)
par(mfrow=c(2,3))
par(oma=c(1,1,1,1))

numb=1
plot(gam1,rug=FALSE,select=1,seWithMean=TRUE,

shift=coef(gam1)[1],xlab="Days",
cex.lab = numb, cex.axis = numb,
ylab=bquote(paste(Intercept˜male˜(italic(beta[10][","][t])))))
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plot(gam1,select=2,ylim=c(-1,1),rug=F,xlab="Days",
cex.lab = numb, cex.axis = numb,
ylab=bquote(paste(PA˜male˜(italic(t-1))˜on˜PA˜male˜
(italic(t)))˜(italic(beta[11][","][t]))))

lines(tt,rep(0,91),col="darkgrey",lty=3)

plot(gam1,select=3,ylim=c(-1,1),rug=F,xlab="Days",cex.lab = numb, cex.axis =
numb,

ylab=bquote(paste(PA˜female˜(italic(t-1))˜on˜PA˜male˜
(italic(t)))˜(italic(beta[12][","][t]))))

lines(tt,rep(0,91),col="darkgrey",lty=3)

plot(gam2,rug=FALSE,select=1,seWithMean=TRUE,shift=coef(gam2)[1],xlab="Days",
cex.lab = numb, cex.axis = numb,
ylab=bquote(paste(Intercept˜female˜(italic(beta[20][","][t])))))

plot(gam2,select=2,ylim=c(-1,1),rug=F,xlab="Days",cex.lab = numb, cex.axis =
numb,

ylab=bquote(paste(PA˜male˜(italic(t-1))˜on˜PA˜female˜(italic(t)))˜
(italic(beta[21][","][t]))))

lines(tt,rep(0,91),col="darkgrey",lty=3)

plot(gam2,select=3,ylim=c(-1,1),rug=F,xlab="Days",cex.lab = numb, cex.axis =
numb,

ylab=bquote(paste(PA˜female˜(italic(t-1))˜on˜PA˜female˜(italic(t)))˜
(italic(beta[22][","][t]))))

lines(tt,rep(0,91),col="darkgrey",lty=3)

dev.off()
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