264 research outputs found

    Solving the mystery of human sleep schedules one mutation at a time.

    Get PDF
    Sleep behavior remains one of the most enigmatic areas of life. The unanswered questions range from "why do we sleep?" to "how we can improve sleep in today's society?" Identification of mutations responsible for altered circadian regulation of human sleep lead to unique opportunities for probing these territories. In this review, we summarize causative circadian mutations found from familial genetic studies to date. We also describe how these mutations mechanistically affect circadian function and lead to altered sleep behaviors, including shifted or shortening of sleep patterns. In addition, we discuss how the investigation of mutations can not only expand our understanding of the molecular mechanisms regulating the circadian clock and sleep duration, but also bridge the pathways between clock/sleep and other human physiological conditions and ailments such as metabolic regulation and migraine headaches

    Casein kinase iδ mutations in familial migraine and advanced sleep phase.

    Get PDF
    Migraine is a common disabling disorder with a significant genetic component, characterized by severe headache and often accompanied by nausea, vomiting, and light sensitivity. We identified two families, each with a distinct missense mutation in the gene encoding casein kinase Iδ (CKIδ), in which the mutation cosegregated with both the presence of migraine and advanced sleep phase. The resulting alterations (T44A and H46R) occurred in the conserved catalytic domain of CKIδ, where they caused reduced enzyme activity. Mice engineered to carry the CKIδ-T44A allele were more sensitive to pain after treatment with the migraine trigger nitroglycerin. CKIδ-T44A mice also exhibited a reduced threshold for cortical spreading depression (believed to be the physiological analog of migraine aura) and greater arterial dilation during cortical spreading depression. Astrocytes from CKIδ-T44A mice showed increased spontaneous and evoked calcium signaling. These genetic, cellular, physiological, and behavioral analyses suggest that decreases in CKIδ activity can contribute to the pathogenesis of migraine

    Essential Regulation of Cell Bioenergetics by Constitutive InsP3 Receptor Ca2+ Transfer to Mitochondria

    Get PDF
    SummaryMechanisms that regulate cellular metabolism are a fundamental requirement of all cells. Most eukaryotic cells rely on aerobic mitochondrial metabolism to generate ATP. Nevertheless, regulation of mitochondrial activity is incompletely understood. Here we identified an unexpected and essential role for constitutive InsP3R-mediated Ca2+ release in maintaining cellular bioenergetics. Macroautophagy provides eukaryotes with an adaptive response to nutrient deprivation that prolongs survival. Constitutive InsP3R Ca2+ signaling is required for macroautophagy suppression in cells in nutrient-replete media. In its absence, cells become metabolically compromised due to diminished mitochondrial Ca2+ uptake. Mitochondrial uptake of InsP3R-released Ca2+ is fundamentally required to provide optimal bioenergetics by providing sufficient reducing equivalents to support oxidative phosphorylation. Absence of this Ca2+ transfer results in enhanced phosphorylation of pyruvate dehydrogenase and activation of AMPK, which activates prosurvival macroautophagy. Thus, constitutive InsP3R Ca2+ release to mitochondria is an essential cellular process that is required for efficient mitochondrial respiration and maintenance of normal cell bioenergetics

    Semiautomated Device for Batch Extraction of Metabolites from Tissue Samples

    Get PDF
    ABSTRACT: Metabolomics has become a mainstream analytical strategy for investigating metabolism. The quality of data derived from these studies is proportional to the consistency of the sample preparation. Although considerable research has been devoted to finding optimal extraction protocols, most of the established methods require extensive sample handling. Manual sample preparation can be highly effective in the hands of skilled technicians, but an automated tool for purifying metabolites from complex biological tissues would be of obvious utility to the field. Here, we introduce the semiautomated metabolite batch extraction device (SAMBED), a new tool designed to simplify metabolomics sample preparation. We discuss SAMBED’s design and show that SAMBED-based extractions are of comparable quality to extracts produced through traditional methods (13 % mean coefficient of variation from SAMBED versus 16 % from manual extractions). Moreover, we show that aqueous SAMBED-based methods ca

    AMP-activated protein kinase deficiency reduces ozone-induced lung injury and oxidative stress in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Acute ozone exposure causes lung oxidative stress and inflammation leading to lung injury. At least one mechanism underlying the lung toxicity of ozone involves excessive production of reactive oxygen and nitrogen intermediates such as peroxynitrite. In addition and beyond its major prooxidant properties, peroxynitrite may nitrate tyrosine residues altering phosphorylation of many protein kinases involved in cell signalling. It was recently proposed that peroxynitrite activates 5'-AMP-activated kinase (AMPK), which regulates metabolic pathways and the response to cell stress. AMPK activation as a consequence of ozone exposure has not been previously evaluated. First, we tested whether acute ozone exposure in mice would impair alveolar fluid clearance, increase lung tissue peroxynitrite production and activate AMPK. Second, we tested whether loss of AMP-activated protein kinase alpha1 subunit in mouse would prevent enhanced oxidative stress and lung injury induced by ozone exposure.</p> <p>Methods</p> <p>Control and AMPKα1 deficient mice were exposed to ozone at a concentration of 2.0 ppm for 3 h in glass cages. Evaluation was performed 24 h after ozone exposure. Alveolar fluid clearance (AFC) was evaluated using fluorescein isothiocyanate tagged albumin. Differential cell counts, total protein levels, cytokine concentrations, myeloperoxidase activity and markers of oxidative stress, i.e. malondialdehyde and peroxynitrite, were determined in bronchoalveolar lavage (BAL) and lung homogenates (LH). Levels of AMPK-Thr<sup>172 </sup>phosphorylation and basolateral membrane Na(+)-K(+)-ATPase abundance were determined by Western blot.</p> <p>Results</p> <p>In control mice, ozone exposure induced lung inflammation as evidence by increased leukocyte count, protein concentration in BAL and myeloperoxidase activity, pro-inflammatory cytokine levels in LH. Increases in peroxynitrite levels (3 vs 4.4 nM, p = 0.02) and malondialdehyde concentrations (110 vs 230 μmole/g wet tissue) were detected in LH obtained from ozone-exposed control mice. Ozone exposure consistently increased phosphorylated AMPK-Thr<sup>172 </sup>to total AMPK ratio by 80% in control mice. Ozone exposure causes increases in AFC and basolateral membrane Na(+)-K(+)-ATPase abundance in control mice which did not occur in AMPKα1 deficient mice.</p> <p>Conclusions</p> <p>Our results collectively suggest that AMPK activation participates in ozone-induced increases in AFC, inflammation and oxidative stress. Further studies are needed to understand how the AMPK pathway may provide a novel approach for the prevention of ozone-induced lung injury.</p

    Metabolic acetate therapy improves phenotype in the tremor rat model of Canavan disease

    Get PDF
    Genetic mutations that severely diminish the activity of aspartoacylase (ASPA) result in the fatal brain dysmyelinating disorder, Canavan disease. There is no effective treatment. ASPA produces free acetate from the concentrated brain metabolite, N-acetylaspartate (NAA). Because acetyl coenzyme A is a key building block for lipid synthesis, we postulated that the inability to catabolize NAA leads to a brain acetate deficiency during a critical period of CNS development, impairing myelination and possibly other aspects of brain development. We tested the hypothesis that acetate supplementation during postnatal myelination would ameliorate the severe phenotype associated with ASPA deficiency using the tremor rat model of Canavan disease. Glyceryltriacetate (GTA) was administered orally to tremor rats starting 7 days after birth, and was continued in food and water after weaning. Motor function, myelin lipids, and brain vacuolation were analyzed in GTA-treated and untreated tremor rats. Significant improvements were observed in motor performance and myelin galactocerebroside content in tremor rats treated with GTA. Further, brain vacuolation was modestly reduced, and these reductions were positively correlated with improved motor performance. We also examined the expression of the acetyl coenzyme A synthesizing enzyme acetyl coenzyme A synthase 1 and found upregulation of expression in tremor rats, with a return to near normal expression levels in GTA-treated tremor rats. These results confirm the critical role played by NAA-derived acetate in brain myelination and development, and demonstrate the potential usefulness of acetate therapy for the treatment of Canavan disease

    Sirt3, Mitochondrial ROS, Ageing, and Carcinogenesis

    Get PDF
    One fundamental observation in cancer etiology is that the rate of malignancies in any mammalian population increases exponentially as a function of age, suggesting a mechanistic link between the cellular processes governing longevity and carcinogenesis. In addition, it is well established that aberrations in mitochondrial metabolism, as measured by increased reactive oxygen species (ROS), are observed in both aging and cancer. In this regard, genes that impact upon longevity have recently been characterized in S. cerevisiae and C. elegans, and the human homologs include the Sirtuin family of protein deacetylases. Interestingly, three of the seven sirtuin proteins are localized into the mitochondria suggesting a connection between the mitochondrial sirtuins, the free radical theory of aging, and carcinogenesis. Based on these results it has been hypothesized that Sirt3 functions as a mitochondrial fidelity protein whose function governs both aging and carcinogenesis by modulating ROS metabolism. Sirt3 has also now been identified as a genomically expressed, mitochondrial localized tumor suppressor and this review will outline potential relationships between mitochondrial ROS/superoxide levels, aging, and cell phenotypes permissive for estrogen and progesterone receptor positive breast carcinogenesis

    Sirtuin 3, a New Target of PGC-1α, Plays an Important Role in the Suppression of ROS and Mitochondrial Biogenesis

    Get PDF
    Sirtuin 3 (SIRT3) is one of the seven mammalian sirtuins, which are homologs of the yeast Sir2 gene. SIRT3 is the only sirtuin with a reported association with the human life span. Peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha) plays important roles in adaptive thermogenesis, gluconeogenesis, mitochondrial biogenesis and respiration. PGC-1alpha induces several key reactive oxygen species (ROS)-detoxifying enzymes, but the molecular mechanism underlying this is not well understood.Here we show that PGC-1alpha strongly stimulated mouse Sirt3 gene expression in muscle cells and hepatocytes. Knockdown of PGC-1alpha led to decreased Sirt3 gene expression. PGC-1alpha activated the mouse SIRT3 promoter, which was mediated by an estrogen-related receptor (ERR) binding element (ERRE) (-407/-399) mapped to the promoter region. Chromatin immunoprecipitation and electrophoretic mobility shift assays confirmed that ERRalpha bound to the identified ERRE and PGC-1alpha co-localized with ERRalpha in the mSirt3 promoter. Knockdown of ERRalpha reduced the induction of Sirt3 by PGC-1alpha in C(2)C(12) myotubes. Furthermore, Sirt3 was essential for PGC-1alpha-dependent induction of ROS-detoxifying enzymes and several components of the respiratory chain, including glutathione peroxidase-1, superoxide dismutase 2, ATP synthase 5c, and cytochrome c. Overexpression of SIRT3 or PGC-1alpha in C(2)C(12) myotubes decreased basal ROS level. In contrast, knockdown of mSIRT3 increased basal ROS level and blocked the inhibitory effect of PGC-1alpha on cellular ROS production. Finally, SIRT3 stimulated mitochondrial biogenesis, and SIRT3 knockdown decreased the stimulatory effect of PGC-1alpha on mitochondrial biogenesis in C(2)C(12) myotubes.Our results indicate that Sirt3 functions as a downstream target gene of PGC-1alpha and mediates the PGC-1alpha effects on cellular ROS production and mitochondrial biogenesis. Thus, SIRT3 integrates cellular energy metabolism and ROS generation. The elucidation of the molecular mechanisms of SIRT3 regulation and its physiological functions may provide a novel target for treating ROS-related disease

    Neuronal Sirt3 Protects against Excitotoxic Injury in Mouse Cortical Neuron Culture

    Get PDF
    BACKGROUND: Sirtuins (Sirt), a family of nicotinamide adenine nucleotide (NAD) dependent deacetylases, are implicated in energy metabolism and life span. Among the known Sirt isoforms (Sirt1-7), Sirt3 was identified as a stress responsive deacetylase recently shown to play a role in protecting cells under stress conditions. Here, we demonstrated the presence of Sirt3 in neurons, and characterized the role of Sirt3 in neuron survival under NMDA-induced excitotoxicity. METHODOLOGY/PRINCIPAL FINDINGS: To induce excitotoxic injury, we exposed primary cultured mouse cortical neurons to NMDA (30 µM). NMDA induced a rapid decrease of cytoplasmic NAD (but not mitochondrial NAD) in neurons through poly (ADP-ribose) polymerase-1 (PARP-1) activation. Mitochondrial Sirt3 was increased following PARP-1 mediated NAD depletion, which was reversed by either inhibition of PARP-1 or exogenous NAD. We found that massive reactive oxygen species (ROS) produced under this NAD depleted condition mediated the increase in mitochondrial Sirt3. By transfecting primary neurons with a Sirt3 overexpressing plasmid or Sirt3 siRNA, we showed that Sirt3 is required for neuroprotection against excitotoxicity. CONCLUSIONS: This study demonstrated for the first time that mitochondrial Sirt3 acts as a prosurvival factor playing an essential role to protect neurons under excitotoxic injury

    Diversity of Cl− Channels

    Get PDF
    Cl− channels are widely found anion pores that are regulated by a variety of signals and that play various roles. On the basis of molecular biologic findings, ligand-gated Cl− channels in synapses, cystic fibrosis transmembrane conductors (CFTRs) and ClC channel types have been established, followed by bestrophin and possibly by tweety, which encode Ca2+-activated Cl− channels. The ClC family has been shown to possess a variety of functions, including stabilization of membrane potential, excitation, cellvolume regulation, fluid transport, protein degradation in endosomal vesicles and possibly cell growth. The molecular structure of Cl− channel types varies from 1 to 12 transmembrane segments. By means of computer-based prediction, functional Cl− channels have been synthesized artificially, revealing that many possible ion pores are hidden in channel, transporter or unidentified hydrophobic membrane proteins. Thus, novel Cl−-conducting pores may be occasionally discovered, and evidence from molecular biologic studies will clarify their physiologic and pathophysiologic roles
    corecore