6 research outputs found

    Combination of Angiotensin (1-7) Agonists and Convalescent Plasma as a New Strategy to Overcome Angiotensin Converting Enzyme 2 (ACE2) Inhibition for the Treatment of COVID-19

    No full text
    Coronavirus disease-2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently the most concerning health problem worldwide. SARS-CoV-2 infects cells by binding to angiotensin-converting enzyme 2 (ACE2). It is believed that the differential response to SARS-CoV-2 is correlated with the differential expression of ACE2. Several reports proposed the use of ACE2 pharmacological inhibitors and ACE2 antibodies to block viral entry. However, ACE2 inhibition is associated with lung and cardiovascular pathology and would probably increase the pathogenesis of COVID-19. Therefore, utilizing ACE2 soluble analogs to block viral entry while rescuing ACE2 activity has been proposed. Despite their protective effects, such analogs can form a circulating reservoir of the virus, thus accelerating its spread in the body. Levels of ACE2 are reduced following viral infection, possibly due to increased viral entry and lysis of ACE2 positive cells. Downregulation of ACE2/Ang (1-7) axis is associated with Ang II upregulation. Of note, while Ang (1-7) exerts protective effects on the lung and cardiovasculature, Ang II elicits pro-inflammatory and pro-fibrotic detrimental effects by binding to the angiotensin type 1 receptor (AT1R). Indeed, AT1R blockers (ARBs) can alleviate the harmful effects associated with Ang II upregulation while increasing ACE2 expression and thus the risk of viral infection. Therefore, Ang (1-7) agonists seem to be a better treatment option. Another approach is the transfusion of convalescent plasma from recovered patients with deteriorated symptoms. Indeed, this appears to be promising due to the neutralizing capacity of anti-COVID-19 antibodies. In light of these considerations, we encourage the adoption of Ang (1-7) agonists and convalescent plasma conjugated therapy for the treatment of COVID-19 patients. This therapeutic regimen is expected to be a safer choice since it possesses the proven ability to neutralize the virus while ensuring lung and cardiovascular protection through modulation of the inflammatory response

    The NADPH oxidase NOX2 is a marker of adverse prognosis involved in chemoresistance of Acute Myeloid Leukemias

    No full text
    Abstract Resistance to chemotherapeutic drugs is a major cause of treatment failure in Acute Myeloid Leukemias (AML). To better characterize the mechanisms of chemoresistance, we first identified genes whose expression is dysregulated in AML cells resistant to daunorubicin (DNR) or cytarabine (Ara-C), the main drugs used for the induction therapy. The genes found activated are mostly linked to immune signaling and inflammation. Among them, we identified a strong up-regulation of the NOX2 NAPDH oxidase subunit genes ( CYBB , CYBA , NCF1 , NCF2 , NCF4 and RAC2 ). The ensuing increase in NADPH oxidase activity, which is particularly strong in DNR-resistant cells, participates in the acquisition and/or maintenance of resistance to DNR. In addition, analyzing gp91 phox ( CYBB -encoded Nox2 catalytic sub-unit) expression at the surface of leukemic blasts from 74 patients at diagnosis showed that NOX2 is generally more expressed and active in leukemic cells from the FAB M4/M5 subtypes compared to FAB M0-M2 ones. Using a gene expression-based score we demonstrate that high NOX2 subunit genes expression is a marker of adverse prognosis, independent of the cytogenetic-based risk classification, in AML patients

    The NADPH oxidase NOX2 is a marker of adverse prognosis involved in chemoresistance of acute myeloid leukemias

    No full text
    International audienceResistance to chemotherapeutic drugs is a major cause of treatment failure in Acute Myeloid Leukemias (AML). To better characterize the mechanisms of chemoresistance, we first identified genes whose expression is dysregulated in AML cells resistant to daunorubicin (DNR) or cytarabine (Ara-C), the main drugs used for the induction therapy. The genes found activated are mostly linked to immune signaling and inflammation. Among them, we identified a strong up-regulation of the NOX2 NAPDH oxidase subunit genes (CYBB, CYBA, NCF1, NCF2, NCF4 and RAC2). The ensuing increase in NADPH oxidase expression and ROS production, which is particularly strong in DNR-resistant cells, participates in the acquisition and/or maintenance of resistance to DNR. Gp91phox (CYBB-encoded Nox2 catalytic sub-unit), was found more expressed and active in leukemic cells from the FAB M4/M5 subtypes patients compared to FAB M0-M2 ones. Moreover, its expression was increased at the surface of patient’s chemotherapy resistant AML cells. Using a gene expression-based score we finally demonstrate that high NOX2 subunit genes expression is a marker of adverse prognosis in AML patients. The prognosis NOX score we defined is independent of the cytogenetic-based risk classification, FAB subtype, FLT3/NPM1 mutational status and age

    Status and Trends of Physical Activity Surveillance, Policy, and Research in 164 Countries: Findings From the Global Observatory for Physical Activity—GoPA! 2015 and 2020 Surveys

    Get PDF
    Background: Physical activity (PA) surveillance, policy, and research efforts need to be periodically appraised to gain insight into national and global capacities for PA promotion. The aim of this paper was to assess the status and trends in PA surveillance, policy, and research in 164 countries. Methods: We used data from the Global Observatory for Physical Activity (GoPA!) 2015 and 2020 surveys. Comprehensive searches were performed for each country to determine the level of development of their PA surveillance, policy, and research, and the findings were verified by the GoPA! Country Contacts. Trends were analyzed based on the data available for both survey years. Results: The global 5-year progress in all 3 indicators was modest, with most countries either improving or staying at the same level. PA surveillance, policy, and research improved or remained at a high level in 48.1%, 40.6%, and 42.1% of the countries, respectively. PA surveillance, policy, and research scores decreased or remained at a low level in 8.3%, 15.8%, and 28.6% of the countries, respectively. The highest capacity for PA promotion was found in Europe, the lowest in Africa and low- and lower-middle-income countries. Although a large percentage of the world’s population benefit from at least some PA policy, surveillance, and research efforts in their countries, 49.6 million people are without PA surveillance, 629.4 million people are without PA policy, and 108.7 million live in countries without any PA research output. A total of 6.3 billion people or 88.2% of the world’s population live in countries where PA promotion capacity should be significantly improved. Conclusion: Despite PA is essential for health, there are large inequalities between countries and world regions in their capacity to promote PA. Coordinated efforts are needed to reduce the inequalities and improve the global capacity for PA promotion.</jats:p

    Status and Trends of Physical Activity Surveillance, Policy, and Research in 164 Countries: Findings From the Global Observatory for Physical Activity-GoPA! 2015 and 2020 Surveys

    No full text
    corecore