6,167 research outputs found

    Intermolecular Forces and the Glass Transition

    Full text link
    Random first order transition theory is used to determine the role of attractive and repulsive interactions in the dynamics of supercooled liquids. Self-consistent phonon theory, an approximate mean field treatment consistent with random first order transition theory, is used to treat individual glassy configurations, while the liquid phase is treated using common liquid state approximations. The transition temperature TAT^{*}_{A} , the temperature where the onset of activated behavior is predicted by mean field theory, the lower crossover temperature TcT_{c}^{*} where barrierless motions actually occur through fractal or stringy motions, and TKT^{*}_{K} , the Kauzmann temperature, are calculated in addition to TgT^{*}_{g} , the glass transition temperature that corresponds to laboratory cooling rates. Both the isobaric and isochoric behavior in the supercooled regime are studied, providing results for ΔCV\Delta C_{V} and ΔCp\Delta C_{p} that can be used to calculate the fragility as a function of density and pressure, respectively. The predicted variations in the α\alpha-relaxation time with temperature and density conform to the empirical density-temperature scaling relations found by Casalini and Roland. We thereby demonstrate the microscopic origin of their observations. Finally, the relationship first suggested by Sastry between the spinodal temperature and the Kauzmann temperatures, as a function of density, is examined. The present microscopic calculations support the existence of an intersection of these two temperatures at sufficiently low temperatures.Comment: Submitted to J. Phys. Chem. A, June 2007 Replaced with accepted version Sept. 200

    Energy storage in the UK electrical network : estimation of the scale and review of technology options

    Get PDF
    This paper aims to clarify the difference between stores of energy in the form of non-rechargeable stores of energy such as fossil-fuels, and the storage of electricity by devices that are rechargeable. The existing scale of these two distinct types of storage is considered in the UK context, followed by a review of rechargeable technology options. The storage is found to be overwhelmingly contained within the fossil-fuel stores of conventional generators, but their scale is thought to be determined by the risks associated with long supply chains and price variability. The paper also aims to add to the debate regarding the need to have more flexible supply and demand available within the UK electrical network in order to balance the expected increase of wind derived generation. We conclude that the decarbonisation challenge facing the UK electricity sector should be seen not only as a supply and demand challenge but also as a storage challenge. (c) 2010 Elsevier Ltd. All rights reserved

    Grid-connected renewables, storage and the UK electricity market

    Get PDF
    This article is a critical counterpoint to an article by published by Swift-Hook in the journal of Renewable Energy entitled "Grid-connected intermittent renewables are the last to be stored". In contrast to Swift-Hook we found evidence that "grid-connected intermittent renewables" have been, and will continue to be stored when it suits the "UK market" to do so.  This article is important to policy makers as energy storage (through EV battery demand side management for example) may well have an important role to play in facilitating the integration of high wind penetrations

    The western blue groper (Achoerodus gouldii), a protogynous hermaphroditic labrid with exceptional longevity, late maturity, slow growth, and both late maturation and sex change

    Get PDF
    The western blue groper (Achoerodus gouldii) is shown to be a temperate protogynous hermaphrodite, which spawns between early winter and mid-spring. Because A. gouldii changes body color at about the time of sex change, its color can be used as a proxy for sex for estimating the size and age at sex change and for estimating growth when it is not possible to use gonads for determining the sex of this fish. The following characteristics make A. gouldii highly susceptible to overfishing: 1) exceptional longevity, with a maximum age (70 years) that is by far the greatest yet estimated for a labrid; 2) slow growth for the first 15 years and little subsequent growth by females; and 3) late maturation at a large total length (TL50 = 653 mm) and old age (~17 years) and 4) late sex change at an even greater total length (TL50 = 821 mm) and age (~35 years). The TL50 at maturity and particularly at sex change exceeded the minimum legal total length (500 mm) of A. gouldii and the lengths of many recreationally and commercially caught fish. Many of these characteristics are found in certain deep-water fishes that are likewise considered susceptible to overfishing. Indeed, although fishing effort for A. gouldii in Western Australia is not particularly high, per-recruit analyses indicate that this species is already close to or fully exploited

    Non Parametric Confidence Intervals for Receiver Operating Characteristic Curves

    Get PDF
    We study methods for constructing confidence intervals, and confidence bands, for estimators of receiver operating characteristics. Particular emphasis is placed on the way in which smoothing should be implemented, when estimating either the characteristic itself or its variance. We show that substantial undersmoothing is necessary if coverage properties are not to be impaired. A theoretical analysis of the problem suggests an empirical, plug-in rule for bandwidth choice, optimising the coverage accuracy of interval estimators. The performance of this approach is explored. Our preferred technique is based on asymptotic approximation, rather than a more sophisticated approach using the bootstrap, since the latter requires a multiplicity of smoothing parameters all of which must be chosen in nonstandard ways. It is shown that the asymptotic method can give very good performance.Bandwidth selection, binary classification, kernel estimator, receiver operating characteristic curve.

    Solvent Influence on Atomic Spectra: The Effect of Finite Size

    Get PDF
    Time dependent Hartree theory is used to determine the solvent effect on atomic spectra for a given solvent configuration. Configuration averaging is performed as in the mean spherical approximation, resulting in an upper bound to the polarizability. Comparisons are made with previous, more approximate theories, including path integral treatments. It is found that deviations from previous theories can be significant in certain regimes

    The Aperiodic Crystal Picture and Free Energy Barriers in Glasses

    Get PDF
    The aperiodic crystal picture associates the glass transition with freezing into a nonperiodic structure. Dynamics in the glassy state involves activated jumps between different aperiodic free energy minima. Activation barriers may be estimated through the use of freezing theory and the theory of dense solids. The results resemble, but are distinct from, free volume theory. Reasonable fits to experimental data are obtained

    Two-versus one photon excitation laser scanning microscopy: Critical importance of excitation wavelength

    Get PDF
    It is often anticipated that two-photon excitation (TPE) laser scanning microscopy should improve cell survival and tissue penetration relative to conventional one-photon excitation (OPE) confocal scanning laser microscopy (CLSM). However few studies have directly compared live cell imaging using one- vs two-photon laser scanning microscopy. We have used calcein-loaded in situ chondrocytes within cartilage as a model for quantitatively comparing these techniques. TPE reduced photo-bleaching and improved cell viability compared to OPE. Using improved detection sensitivity coupled with increased tissue penetration of the near infra-red TPE laser, it was possible to capture images deeper within the cartilage. However, the advantages of TPE vs OPE were strongly dependent on excitation wavelength. We conclude that optimising TPE conditions is essential if the full benefits of this approach are to be realised

    Integrating aerodynamics and structures in the minimum weight design of a supersonic transport wing

    Get PDF
    An approach is presented for determining the minimum weight design of aircraft wing models which takes into consideration aerodynamics-structure coupling when calculating both zeroth order information needed for analysis and first order information needed for optimization. When performing sensitivity analysis, coupling is accounted for by using a generalized sensitivity formulation. The results presented show that the aeroelastic effects are calculated properly and noticeably reduce constraint approximation errors. However, for the particular example selected, the error introduced by ignoring aeroelastic effects are not sufficient to significantly affect the convergence of the optimization process. Trade studies are reported that consider different structural materials, internal spar layouts, and panel buckling lengths. For the formulation, model and materials used in this study, an advanced aluminum material produced the lightest design while satisfying the problem constraints. Also, shorter panel buckling lengths resulted in lower weights by permitting smaller panel thicknesses and generally, by unloading the wing skins and loading the spar caps. Finally, straight spars required slightly lower wing weights than angled spars

    Efficient computation of hashes

    Get PDF
    The sequential computation of hashes at the core of many distributed storage systems and found, for example, in grid services can hinder efficiency in service quality and even pose security challenges that can only be addressed by the use of parallel hash tree modes. The main contributions of this paper are, first, the identification of several efficiency and security challenges posed by the use of sequential hash computation based on the Merkle-Damgard engine. In addition, alternatives for the parallel computation of hash trees are discussed, and a prototype for a new parallel implementation of the Keccak function, the SHA-3 winner, is introduced
    corecore