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The aperiodic crystal picture and free energy barriers in glasses

Randall W. Hall® and Peter G. Wolynes

Noyes Laboratory, University of Illinois, Urbana, Illinois 61801
(Received 29 October 1986; accepted 24 November 1986)

The aperiodic crystal picture associates the glass transition with freezing into a nonperiodic
structure. Dynamics in the glassy state involves activated jumps between different aperiodic
free energy minima. Activation barriers may be estimated through the use of freezing theory
and the theory of dense solids. The results resemble, but are distinct from, free volume theory.

Reasonable fits to experimental data are obtained.

The glass transition is most clearly manifested in the
strong dependence of rate processes such as diffusion on
thermodynamic state. Some theories of glasses such as those
based on dense fluid kinetic theory or mode coupling theor-
ies make this observation the touchstone of their approach to
the problem. - Other theories are based on equilibrium con-
siderations and thus the observed dynamic phenomena are
derived properties.>* The two styles of approach are not nec-
essarily orthogonal® and a complete theory will probably
give equal weight to both views, at least near the glass transi-
tion itself. In this paper we will explore some dynamical con-
sequences of the quasiequilibrium aperiodic crystal picture
of the glass transition.>* In particular we will derive approxi-
mate expressions for the free energy barriers between differ-
ent structures of a glass. The theory thus deals with some of
the local features of the dynamics of glasses while, at the
same time, skirting some of the global questions of compli-
cated sequential or hierarchical dynamics.>’

The aperiodic crystal picture that we employ can be un-
derstood in terms of either a liquid based theory such as the
density functional theory of freezing®® or a solid based, cell-
type theory such as the self-consistent phonon theory of Fix-
man.'® The density functional theory starts with the free
energy of the system expressed as a functional of the spatially
varying number density of the fluid. Freezing is understood
to arise from the existence of minima of the free energy cor-
responding with periodically varying densities. Starting with
Ramakrishnan and Yusouff ® this approach has led to a
quantitatively successful theory of freezing in a variety of
simple systems.® It is far from clear that the space of free
energy minima is exhausted by those periodic solutions. The
self-consistent phonon theory®'? assumes that each atom vi-
brates about its lattice site with some nonzero frequency. In
this theory both the centers-of-vibration and the vibrational
frequencies are determined by minimizing the appropriate
free energy functional. As in the density functional ap-
proach, both periodic and aperiodic solutions are possible.
The aperiodic crystal picture of the glass transition connects
the broken ergodicity of glasses with the system being
trapped in a free energy minimum with an inhomogeneous
but aperiodic density. Without symmetry, however, the
complete search for free energy minima is made difficult.

At zero temperature minimum energy structures which
lack periodicity have been generated on computers by a var-
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iety of methods.'"!* Once these zero temperature minima
are located they can be used to generate an inhomogeneous
spatial density that would be smeared by thermally excited
vibrations about the minimum energy structure. In the sim-
plest version®* a single variational parameter analogous to a
Debye—Waller factor can be introduced to search for free
energy minima using the energy minima as starting points.
When the thermal motions are too large the inhomogeneous
density no longer corresponds with a minimum of the free
energy—signaling the restoration of ergodicity in the sys-
tem. In passing we note there are many points of contact of
the aperiodic crystal picture with the density functional the-
ory of quasicrystals.'® Quasicrystals correspond with quasi-
periodic densities that minimize the free energy. It may turn
out that the aperiodic minima we discuss can be thought of
as defected quasicrystals or other structures connected with
crystals in curved space.'* We feel it is useful to discuss the
glass problem without making this identification because
many of the formal relationships that arise in the aperiodic
crystal picture may be carried over to more complex molecu-
lar systems where quasiperiodicity or curved space consider-
ations may be difficult to apply in the classification of the
aperiodic states.

Since there are many minimum energy structures there
are likely to be many minimum free energy structures. For
these to correspond with thermodynamic pure states the free
energy barrier between these minima should not be micro-
scopic. That is they should scale with a positive power of the
size of the system. The purely thermodynamic analyses of
the glass transition essentially made this assumption. In this
sense the theories were like early treatments of spin glasses'’
that ignored the effects now associated with replica symme-
try breaking. Many of the observations made in experiments
and simulations of glasses can be rationalized on the basis
that some of the free energy barriers are large but still micro-
scopic. Thus transitions between these states gives rise to the
slow relaxation processes in glasses. Thus the consideration
of free energy barriers is important in addressing both ques-
tions of principle and practice.

We will use the density functional theory itself to esti-
mate the free energy barriers between any two aperiodic
minima. From the pristine thermodynamic derivations of
free energy functionals it may seem odd to investigate this
nonequilibrium question. Nevertheless, there is ample pre-
cedent for using free energy functions outside of strict equi-
librium. Near to equilibrium such functionals determine the
dynamics of small amplitude motions as in Landau-Ginz-
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characteristic of the dynamics of a glass. We also note that S
and m are O(X¥,, ), the number of particles that move. As a
result, the activation free energy will not necessarily be mac-
roscopic but can lead to long relaxation times.

As an example of our scheme, we study the interaction
free energy functional arising from Stoessel and Wolynes’s®
modification of Fixman’s'® self-consistent phonon theory.
In this theory

BFint = — z ln[l + Jdrpj (l') f dl'l_f(r’ —_ Rj )pk (l'l)],
7k
where  f(r) =exp[ —BV(r)], p(r) =Zp,(r), p;(r)
= (a;/m)** exp[ — a;(r — R})], ¥(r) is the pair poten-
tial energy, and R; is the center of vibration for the jth atom.
Notice that the atoms interact only with the fiducial sites of
the other atoms. This feature results from the fact that this is
essentially a cell theory,?* where atoms are assumed to be
restricted to cells. For simplicity, we further assume that S;
=0and m; = A%, |and a; = a for all j. We refer to this
as an Einstein approximation since it assumes that all the
vibrational frequencies are the same. The result of these ap-
proximations is

62

BAFT = —6—N,,,A2 Tr(V?BFZ,)

1
=7 Oa’

where 5 = (6A)2N,, is the “distance” moved to the transi-
tion state and « is an effective force constant and we assume
8 = 1/2 at the transition state. We expect r, to be only weak-
ly dependent on density (since it has to do with alternative
geometrical packings) and hence expect most of the density
dependence to be manifested in a. For the Stoessel-Wolynes
functional, it is possible to show that

. A
o SO = R

where p, is the close packed density (usually taken to be
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FIG. 1. A schematic cross section of the free
energy surface for various aperiodic packings.
The local harmonic approximations are indi-
cated with dashed lines.

poo3 =1.22) and

7
o
and z is the number of nearest neighbors. This result is more
general than might be expected from our derivation. Since a
has units of inverse length squared, it must depend on the
length scales involved in the problem. For the hard sphere
system studied here, the only relevant length scales are the
hard sphere diameter o (which is related to the random close
packed density and, hence ¥,,) and the nearest neighbor dis-
tance d (which is related to the density and, therefore, V).
We can quantify the expected relationship by calculating the
mean square average displacement of an atom from its fidu-
cial site, holding all other atoms fixed. We find

A=

{(r—=R)? =fdr3 FG(d—a—r)/fdr” 0d—o—r)

~(d—0)’~[1 - (VyM)'"],

and since « is the spring constant for atomic motion,

g

((r—R)?)

and, hence,

« 1

[1 _ (VO/V)IIS]Z :

Thus, although we have derived the high density expression
for a from a particular expression for BF“, we can see that
from purely dimensional arguments that & must have the
above behavior. If viscous relaxation proceeds via transi-
tions between different packings we would predict that the
viscosity should go as

Iny=1Inn,+BAFT,

(1)

c
=0t T R
where ¢ =} 73 4. For V — V, <V, we find

’

[

Ingp=1 _—
ST AT
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TABLE I. Parameters for the fits of viscosity to both the free volume and aperiodic crystal theories. The IPB are the results of the isopropyl benzene of Jonas
etal. (Ref. 24) at the indicated temperatures, TNB are the results for tri-napthyl benzene (Ref. 26) with fits to the low temperature (LT), high temperature
(HT), and entire (full) temperature range, NPB is the result for n-propyl benzene (Ref. 25) and NBB is the result for n-butylbenzene (Ref. 25). The
parameters are for both Doolittle (D) and aperiodic (HW ) equations, with meanings of the parameters indicated in the text. p¥ and p¥ are calculated using

Ouw (p* = po®) and the lowest and highest densities studied experimentally.

Iny ¢ a(A)

Compound D HW D D w n/o’ p¥ A
IPB 253 K —4.0 —33 1.33 0.064 5.75 5.54 0.29 0.80 0.90
IPB 228 K —21 —13 0.58 0.017 5.93 5.80 0.08 0.93 1.03
IPB 203 K —2.8 - 1.7 0.90 0.030 5.89 574 0.14 0.93 1.00
TNB LT —41.0 —28.7 4.58 0.088 9.04 8.92 0.40 1.06 1.09
TNB HT — 6.4 - 5.1 0.33 0.004 2 9.29 9.21 0.02 1.04 1.15
TNB Full —12.6 — 84 1.14 0.0155 9.18 9.09 0.07 1.00 1.15
NPB — 105 —-173 0.547 0.005 6 6.20 6.16 0.03 1.13 1.15
NBB - 10.8 —74 0.599 0.006 38 6.45 6.40 0.03 1.13 1.14

This form is different from the traditional Doolittle equa-
tion, which stems from free volume theory. Nevertheless, it
shows a divergence of the activation free energy as close
packing is approached. ,

The actual calculation of BF ™™ involves averaging over a
distribution of fiducial sites {R}; we have used the g(r) tabu-
lated by Bennett'! in his studies of the random close packing
of spheres. This calculation combined with the known limit-
ing form of ¢(p) allows the determination of z, which we
find to be z = 8, in accordance with the number of nearest
neighbors in Bennett’s study. Thus, by fitting our form for
In 7 to experiment, we can determine both In 7, and 7§ and
compare with the simulation studies. In a series of papers,
Stillinger and Weber'® have looked at potential energy mini-
ma (as opposed to our course here) and has calculated 73 for
two systems (in their terminology (|u;|>)N =4r3): a sys-
tem of pseudo-Lennard-Jones atoms, for which 73

= 0.095¢2, and for a Ni-P mixture, for which 0.010> <73
<0.250%. We expect In 77, to be a typical liquid value and,
hence, estimate the range to be expected from Lennard-
Jones simulation studies.”®> The values obtained are
— 1.2<log(n,0*v' mkT)< — 0.5. Experimentally, there
are usually two regions to be found in the viscosity data, one
from 7 ~0.01 P to p ~ 10°P and the other from 7~ 10> P to
7~ 10" P. We expect our theory to be physically most rea-
sonable in the latter region (which we call the low tempera-
ture region). We have fit some of the available experimental
data®*2% with both the Doolittle equation and Eq. (1) and
found that, within each region, both equations fit equally
well. The fit parameters are tabulated in Table 1.

Several points can be made by examining the data in
Table L. First of all, the fitting parameters are not monotonic
functions of density. However, we found it possible to de-
grade the fits somewhat and obtain monotonic behavior.
This suggests that the experimental data have not been accu-
mulated over a wide enough density range to adequately test
the two theories. This is quite clear when we examine p} and
P, the density regime over which our fitted o value suggests
the experimental data were obtained. Further examination
shows that only the tri-napthyl benzene has really been stud-
ied at a high enough density and over a large enough density

range to really test our theory. We have fit each region sepa-
rately and the full data. The values of p¥ and p¥ obtained
from the separate fits indicate that, once again, the fit is not
over a large enough range (particularly for the low tempera-
ture region ). Thus we expect good fits in the two regions, but
simply because we have three fitting parameters at our dis-
posal. Thus, at the moment we feel the best test of the two
theories is the fit to the full data, shown in Fig. 2. We notice
that, while the fit is not as good, the values of 72 are indeed
reasonable. In addition, the value for the reduced viscosity
log(7,0°/v/'mkT) is — 0.58 reasonably close to the range
expected (by contrast, the values for the low and high tem-
perature fits are — 9.3 and + 0.90, respectively, both out-
side the expected range). While the free volume fit is as good
as our theory, the value of 7, is about 100 times smaller than
we should expect.

As previously mentioned, the a values correspond to
vibrations of the atoms about their fiducial site (¢ =3/
2{r*)). If our theory is correct, then we have a definite pre-
diction of how the viscosity should vary with the mean
square displacement,

Iny =Inn, +3r5/(r). (2)

The mean square displacement can be measured in Moss-
bauer scattering experiments and, hence, we should be able
to predict the variation in viscosity with density. Unfortu-
nately, there exist very few overlaps between studies of vis-
cosity in the glass region and Mdssbauer studies. We have
found, however, some data due to Champeney and Sedg-
wick?® on n-propyl benzene and n-butyl benzene that have
corresponding viscosity data. The recoilless fraction deter-
mined in a Mdssbauer experiment is given by

Inf=Iny—Q*r)/3, (3)
where In ¢ is determined by extrapolation to low tempera-
ture and Q is the wavelength of the radiation. Combining
Eqgs. (2) and (3), we find

0°rg
4In(f/y)’
Thus, by fitting In % vs 1/In( f/¥), we can see if this form is
correct. This will also allow us an independent determina-

Inp=Inn,—
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Full Temperature Range

2947

35 ¥ T 1 L} I 1 T I 1 T ) ¥ v k]

—uo— Experimental
~ =0—- Density
HW

—

30

25

LN (Viscosity)

1 J T 1 L J

-] FIG. 2. A fit of the density dependence of the
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tion of 73, which we can compare to the results in Table I. We
have estimated the values of In( f/y) from the published
graphs (see Fig. 3) and have determined 72 = 0.020 for 7-
propyl benzene and 75 = 0.01¢? for n-butyl benzene, in fair
agreement with our other estimate. As can be seen from Ta-
ble I, the regions on density spanned by most of the experi-
mental studies is rather small, so it is (perhaps) not surpris-
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FIG. 3. Logarithmic plot of viscosity vs Mdssbauer parameter In( f/y) ~*
for n-propylbenzene.

ENEET 05

.47

1149 151 153

ing that both our form and the Doolittle equation match
experiment.

We have shown how to determine the free energy bar-
riers in amorphous systems, using the stationary points of
the free energy functional. Interestingly, the properties are
dependent on overlap functions of the positions of nearby
minima, similar to the order parameters in the replica sym-
metry breaking theories of spin glasses.?® In a simple approx-
imation, the theory replaces each minimum by a parabola
and the transition state is determined by the crossing point,
in a manner similar to theories of electron transfer reactions.
The distance of least motion is analogous to the principle of
minimum chemical distance (PMCD) common in organic
chemistry.?® In particular, our distance corresponds to the
geometrical changes considered in the PMCD. The distribu-
tion of distances between minima leads to a distribution of
free energy barriers and, hence, the nonexponential behavior
seen in glasses. We have applied our theory to a series of
experiments and fit the data as well as the previous free vol-
ume theory. While we have used the high density form in
determining the density dependence of a, fits using the actu-
al a values obtained using the Bennett g(7) were not qualita-
tively different. At the same time, we have a microscopic
justification for the density dependence, as opposed to the
somewhat controversial mechanism involved in the free vol-
ume theory. The free volume theory assumes that when
enough free volume accumulates, a particle can jump. It is
also assumed that it requires no energy to redistribute the
free volume. Our theory, on the other hand, depends on the
underlying lattice to form the free energy surface on which
particles diffuse. Thus, it is a much more reasonable mecha-
nism than the seemingly empirical free volume theory. We
have also shown that the parameters determined from fitting
our functional to the data are not unreasonable numbers,
particularly by comparing to Mdssbauer data. It would be

J. Chem. Phys., Vol. 86, No. 5, 1 March 1887
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very useful to have more experiments that probe the viscos-
ity as a function of density in connection with Mossbauer
experiments to rigorously test both theories. We have also
assumed that there is only one free energy barrier at a given
density, which we know to be incorrect. We should, there-
fore, average over a distribution of free energy barriers (cor-
responding to a distribution of 72 ), which could very well
lead to a fractal power of V-V, determining In 7. We are in
the process of determining these distributions.3°
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