DOMINICAN
UNIVERSITY

of CALIFORNIA Dominican Scholar

Collected Faculty and Staff Scholarship Faculty and Staff Scholarship

1985

Solvent Influence on Atomic Spectra: The Effect of Finite Size

Randall W. Hall
School of Chemical Sciences, University of lllinois, Urbana, randall.hall@dominican.edu

Peter G. Wolynes
School of Chemical Sciences, University of Illinois, Urbana

https://doi.org/10.1063/1.449179

Survey: Let us know how this paper benefits you.

Recommended Citation

Hall, Randall W. and Wolynes, Peter G., "Solvent Influence on Atomic Spectra: The Effect of
Finite Size" (1985). Collected Faculty and Staff Scholarship. 192.
https://doi.org/10.1063/1.449179

DOI
http://dx.doi.org/https://doi.org/10.1063/1.449179

This Article is brought to you for free and open access by the Faculty and Staff Scholarship at
Dominican Scholar. It has been accepted for inclusion in Collected Faculty and Staff Scholarship by
an authorized administrator of Dominican Scholar. For more information, please contact
michael.pujals@dominican.edu.


https://scholar.dominican.edu/
https://scholar.dominican.edu/all-faculty
https://scholar.dominican.edu/faculty-scholarship
https://dominican.libwizard.com/dominican-scholar-feedback
http://dx.doi.org/https://doi.org/10.1063/1.449179
mailto:michael.pujals@dominican.edu

Solvent influence on atomic spectra: The effect of finite size

Randall W. Hall and Peter G. Wolynes

School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801

{Received 14 May 1985; accepted 20 June 1985)

Time dependent Hartree theory is used to determine the solvent effect on atomic spectra for a
given solvent configuration. Configuration averaging is performed as in the mean spherical
approximation, resulting in an upper bound to the polarizability. Comparisons are made with
previous, more approximate theories, including path integral treatments. It is found that
deviations from previous theories can be significant in certain regimes.

I. INTRODUCTION

Spectroscopy provides the most direct experimental ap-
proach to understanding electronic structure. Because the
fundamental spectroscopic study of liquids is not nearly as
developed as the spectroscopy of gases and crystalline solids
our understanding of the electronic structure of liquids is
considerably more rudimentary than our understanding of
their other properties. Recent developments in the theoreti-
cal treatment of quantum processes in liquids and disordered
materials give new life to this area.’™

In this paper we will examine the solvent induced shifts
in the electronic absorption spectra of dissolved species. Be-
sides the ubiquitous complex molecular systems, many sim-
ple systems have been spectroscopically studied such as no-
ble gas mixtures, solvated electrons, and aromatic molecules
in solution. We particularly wish to discuss the relationship
between some recent treatments based on path integral tech-
niques'® and more traditional viewpoints from quantum
chemistry. A key issue in our discussion is the role of the
finite size of the orbitals describing electrons in excited state
species. OQur discussion of the role of the solvent in modifying
the extent of molecular orbitals may be relevant in other
contexts. For example, these excited states may be virtual
states in the tunneling of electrons between dissolved species.
In addition, the extent of the orbitals is important in address-
ing quantitatively questions of localization in disordered sys-
tems that arise in the study of the metal-insulator transi-
tion.®

The major effects of a solvent on a solute’s absorption
spectrum are to shift the location of the peak and to broaden
the peak. In most systems studied, the shift is to the red but
there are, however, cases in which the transition is blue shift-
ed. This variety of behavior suggests a variety of mechanisms
for the interaction. Among these are charge polarization in-
teractions, such as those that give rise to the van der Waals
attraction in the ground state, and exchange effects that give
rise to the repulsive forces in the ground state.

In addition to the variety of mechanisms there have been
a variety of theoretical models and methodologies that have
been applied to the problem. Among the earliest of these was
the continuum electrostatic approach of Jortner and Coul-
son.”® This theory treated the excited state as a Wannier
exciton. The solvent was described as a dielectric continuum
and hence ignored exchange effects and the details of the
solvent structure. Their theory predicted the possibility of
both red and blue shifts. The basic continuum approach has
been used in other contexts.
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A radically different approach was taken by Saxton and
Deutch.’ They assumed the excited state was fairly well lo-
calized, like a Frenkel exciton. In that case, a pairwise addi-
tive potential for both ground and excited states would be
adequate. The pair potentials were obtained empirically
from gas phase data so their treatment includes both ex-
change and polarization effects. Nevertheless, the pairwise
additivity assumption leaves out possible excitation hopping
mechanisms that would stabilize the excited state. Their
treatment also does not give any direct information about
the excited state wave function. Herman and Berne'® have
modernized this approach through their calculations of
spectra via molecular dynamics simulation. The simulation
technique also gives information about changes in the shape
of the spectral lines.

Most recently solution spectra have been analyzed via
path integral techniques for a model in which the electronic
degrees of freedom are imitated by internal Drude oscilla-
tors.> Again this model envisions a localized Frenkel excita-
tion but it does allow coherent hopping from site to site. The
analysis uses the solution of the mean spherical model in
which dipolar couplings between atoms are included. Some
of the effects of the finite extent of the orbitals have been
taken into account through the inclusion of quadrupolar ex-
citations by Logan.* His results are also interesting because
of their quantification of collision-induced spectra in these
systems. Nevertheless, even this extension, by the nature of
the model fails to include the effects of exchange. Also the
basic Frenkel-like picture of the excitation is preserved.

In this paper we will show how many of the positive
features of each of the above approaches can be combined.
Our approach also makes contact with traditional studies of
the excited state of small molecules made with Hartree-
Fock (HF) and random phase approximation (RPA) ideas.
In this sense it has a lot in common with the studies on small
clusters that were pioneered in this context by Sun, Rice, and
Jortner.'! Many of our cautionary conclusions are contained
in their early presentation. The RPA has been used before in
discussing solution spectra'?but our treatment uses the ideas
involved in the MSA theories to take into account the fluid
structure. The present paper will focus on the finite orbital
size effects but we plan to treat exchange effects later.

Il. REVIEW OF PREVIOUS THEORIES

In this section we shall briefly review the previous theor-
ies. The continuum solvent approach was first described by
Jortner and Coulson,® who treated the solute as an atom
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¥V, is the interaction between the solute and the /th solvent
molecule and a refers to the ath Born—Oppenheimer sur-
face. Thus,

AE,_,, =EY) —E\.
Averaging this over all nuclear configurations, one obtains
the expression of Saxton and Deutch:

aE=dmp [ [EY01— EWn)er*
0

where p is the density and g(r) is the pair distribution func-
tion for the system. Rather than calculate the first order
correction (E !}') using electronic wave functions, Saxton and
Deutch use a standard Lennard-Jones potential for each sur-
face, choosing the parameters to give correct low density
thermodynamics and energy shifts. The radial distribution
function is chosen to be its correct low density form for the
ground state. Using this form, Saxton and Deutch were able
to predict the blue shift of xenon in argon. We can make
several comments about this approach. It does not include
three-body effects nor does it differentiate between localized
and delocalized two-body interactions. It is of interest to
know the magnitude of these effects, for the latter may be
well represented by a Drude MSA calculation while the for-
mer will be completely absent. In addition the Saxton-
Deutch theory is a semiempirical model and does not give us
any information about the form of the excited state wave
function. Also, no information can be obtained about any
change in the line shape of the transition, something that
should be particularly important when the solute and sol-
vent bands are close to each other.

Finally, we mention the Drude model. In this model, the
solvent and solute are modeled by fluctuating point dipoles
embedded in hard spheres. In the limit of very tightly held
charge distributions, this will adequately represent the inter-
molecular interaction. By design, this approach will not in-
clude any effects due to finite size of orbitals or exchange.
The quantum version of the Drude model was solved by
Thompson, Schweizer, and Chandler? as well as Héye and
Stell> and extended to spectral properties by Schweizer,
Chandler, and Wolynes.> A further extension to include
quadrupolar interactions was made by Logan.* The main
result of this model is that the solute frequency is shifted
away from the solvent band. For the systems studied here,
this means the transition will always be red shifted. An im-
portant feature is that due to symmetry, terms analogous to
AEY)_,, (the first order shift) are absent since the interac-
tion is dipolar. At large distances, the interactions are di-
pole—dipole, so we expect the Drude model to be important
when the solute and solvent are well separated. If, in addi-
tion, at short distances the nondipole interactions are can-
celled by exchange, the Drude model should also be a good
approximation. Thus, only in these cases do we expect the
Drude model may adequately describe the transition.

We shall show how to develop a theory that reduces to
each of the above theories in the appropriate limit. First,

though, we shall discuss the use of the time dependent Har-
tree method at the continuum level as this will illustrate
some of the techniques we shall use at the discrete level and
give us a limiting expression to which our discrete results
must reduce.

lll. CONTINUUM EXCITED STATE

Our excited state calculation will use the time depen-
dent Hartree method, originally suggested by Dirac'® and
modified by Karplus,'® and Karplus and Kolker'” particu-
larly to calculate the properties of isolated atoms and mole-
cules. In normal time dependent perturbation theory, details
of the perturbed wave function or second order properties
such as the polarizability involve infinite summations over
virtual states. Such a summation will be slowly convergent,
unless the external perturbation is close to resonance with
one of the virtual states. Karplus and co-workers suggested a
method that by-passed the need to sum over these states.
This method creates a functional that satisfies a variational
principle and which reduces to the polarizability when the
exact function is found. In our problem, the method will be
used to develop a functional that includes environmental ef-
fects. We shall consider the effect of applying an external
field of the form

H=H,+V " +V_e
3025
eloyr 2 €lw)
Xf &P,
[r—r|
Pi't)=e B[y + ¢ & +p_e ).
We then form the functional L =(¥ | — i(d/dt) + H |¥ ),

and keep only the time independent terms to second order in
the perturbation. We then find

L=, |A+old,)+ @_|4 —olp_)
—a, (¢ +¥_) P, Y0
+ W Vo o) + (ol Vi ls)
+ (P_|V_|9o) + (ol V_[¢-),

A=H,+a, [i —Pyr. )] _E,
r>

H=—-1V—

where

a=(1-=1) Po= [, v e
6((0) ll‘> —-r l
This functional may be shown to be an upper bound to the
polarizability (see the Appendix) and thus, we can minimize
L with respect to ¥, and ¢_. As variational functions we
choose

Yo =a, i)

b =a_px

h = [ e D).
T

V'is a unit vector in the direction of the applied field. After
minimization with respect to a_, and @_ and assuming that
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V,=V_=V,wefind

24V73,
42 —0* —24a,K’
Vie= (1//1|V|1/10),

A= (4,|H, + a(—i— _Po) — Elt),

alw) =

K= f dr K (eWoleli(r),

K= f—Lwr')%(r').

|r> - rll

We now minimize a(w) with respect to «, a nonlinear process
which must be done numerically. Thus, for a given , the
best x can be found and the polarizability calculated. In our
work, we have only calculated the real part of the polariza-
bility, and, hence, find the anomalous dispersion and indir-
ectly determine the shift in the absorption spectrum.

It should be noticed that our calculated a(w) will not
satisfy the Kramers-Kronig'® relations since « has a differ-
ent value at each value of . We can, however, force a(w) to
satisfy the Kramers—-Kronig relations by fixing « to the value
that minimizes a(w) at @ = w*, the transition frequency.
Since we have calculated the real part of the polarizability
o'(w), we can determine the imaginary part a”(w) by using
the relation

” 2 “ TN Cl)dw/
a (a)):; A a(a))wz—_a-)l—z

IV. DISCRETE MEDIUM

A discrete solvent can be treated by using a combination
of the time dependent Hartree (or Hartree—~Fock) method
and standard liquid state theory. This combination uses the
variational properties of the energy and polarizability to de-
rive a density expansion for these quantities that is similar to
the mean spherical approximation. In liquid state theory one
often resums a density expansion for a quantity by simply
Padéing the first two terms in the expansion

A(p)=Ao+pd, —pAr+ -
A
~Ay4+p—L
TP T o4,
2

A
=do+pdi —pA+p7 =24
1

This resummation allows the quantity A4 { p) to be calculated
for large values of p. In many types of perturbation theory,'®
it is possible to derive Padé approximates variationally,
bounding the desired quantity and giving theoretical justifi-
cation to this intuitively appealing construction. We shall
use the same type of variational ideas to derive expressions
for both the ground state energy and the polarizability of the
solute.

Consider a system of a solute and N solvent particles
with Hamiltonian:

3217

Hy=hy(Ryry) + z [A;(R;,r;) + Vi;(RLR, ry,1)) ]
J

+ z U,j(Ri’Rj 3T ),

i<j

4.1)

where

R, represent the nuclei of the & th particle,

r, represent the electrons of the k th particle,

h, is the k th isolated particle Hamiltonian,

Vy is the total electronic and nuclear interaction
between particles 1 and j, including nucleus-nu-
cleus, electron—electron, and electron—-nucleus in-
teractions,

is the total electronic and nuclear interaction
between particles / and j, including nucleus-nu-
cleus, electron—electron, and electron—nucleus in-
teractions.

i

We shall make the Born—-Oppenheimer approximation
and assume the wave function for the system is given by

¢j(rj |Rj) + c¢;(Ry; )5¢j(rj |Rj)
[1+ R,
hy, = Xy, hj¢_;) = 6?¢j’ h;6¢, = 51'15¢j-

’

@ (r[R) = ¥,(r, [R)[

Here we are using the tight binding model by assuming that
the electrons are localized about nuclear centers. We are also
assuming the single excitations of the medium are indepen-
dent of each other, analogous to the mean spherical and co-
herent potential approximations. The first order correction
to the wave function 8¢, is given to first order, by

sy =3 GV,
n#j € — €,

where |n) are the unperturbed wave functions of the solvent
Hamiltonian and V'is the perturbation. As a simple approxi-
mation, we choose V' to be due to only the solute and, hence,
Vwillbe directed along R ,;. Thus, 6¢; mustbealong R ,; and
will be chosen to include only the lowest eigenfunction that
lies along R ,;. For a spherically symmetric ground state, this
will mean 8¢, will have p symmetry. ¢;(R ) will be chosen to
minimize the energy of the jth solvent—solute interaction (as
in the MSA) and ¢ will be chosen to minimize the nuclei-
averaged energy. To second order in ¢;(R ), the ground state
energy is given by

E,=E0 + Z[czc}(RU)Aj + 2¢¢;(R;)Vi{Ry;) ]
J

+ 2P [GR,) U5 Ry) + ci(R)U 30 (Ry;)]

+ 4c2ci(R1i)cj(R1j)U3(R1j)]’ (4.2)
4; =€ — €+ VyRy) - VyRy), €& = (5¢;h;158,),
€ = (¢;lh;|¢;),
U2 (Ry) = U3(R;) — UyRy),
VoR) = (14 |V (R)[¢1¢ ),
ViR) = (¢,¢ |V (R)|¢,66 ),
VAR) = (4,66 |V (R)|¢),6 ),
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UO(Rij) = <¢i¢j I (Jij(Rij)l¢i¢j)’
U;(R,y) = <5¢i¢jl[jﬁ(Rij)|5¢i¢j>,
UB(Rij) = (5¢i¢j’Uij(Rij)|¢i6¢j>’

E$=& + [+ VuRy)] + 3 UR,)

6‘1) = ('/’1|h1|¢1),
R, =R, —R,.

We choose ¢;(R ;) by assuming that the solute interacts with
just one solvent molecule at a time and ¢ is then used to
incorporate higher order effects. Thus, ¢; can be obtained
from the two body variational equation

OE,

=2c,4,4+2V, =0,
acl J&=F 1
Cj = - VI/AJ‘

Inserting ¢; into Eq. (4.2) and averging over nuclear posi-
tions, we obtain

(EfR)p =E;o=EQ +*4 —2cA + 4’ + ¢*D,

V?(Ru))

A= rr——— b

(21: 4,Ry) /r

s < [V%(R,,-)UQO(R,,)
i<j A;(le)

V%(Rl,-)U;o(Ri,)] >
A%R,) R

b < o5 VI(RU)UAR,-,-W.(R”)) .
S AR4Ry) e
We now choose c as a variational parameter to minimize E,,
thus finding the variational equation

OEy/9c =2cA —24 +2c(A' + D)=0
or

P S
A+A'+D
and
_ 4
1+’ +Dy4d’
Thus, the MSA style Pade appears naturally as a result of the
minimization process.

The excited state is treated, as a first approximation, by
time dependent Hartree theory. We consider the effect of
turning on an electric field of the form U, = Uyfr,)e ~**;
i.e., a field that interacts only with the solute. If the solute
and solvent absorption frequencies are well separated, this
approximation will be valid. However, for treating pure sol-
vents or solutes with nearly resonant frequencies, it may be
necessary to self-consistently determine all the polarizabili-
ties in the problem. As a simple first application, we shall
consider the system of atomic hydrogen dissolved in rare gas
liquids, ignore the self-consistency problem and assume the
solvent polarizabilities are not renormalized. With the above
assumptions, the Hamiltonian becomes

H=Ho+ Uo(e—iwt+eimt)’

where H, is given in Eq. (4.1). To first order in the perturba-
tion, it can be shown that the wave function must be the form

E,=E} (4.3)
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o — iEot Yy +d e +d et ™
T+@ P+ P
o4+ dj'— 5¢}”e —iwt 4 dj+ eiw'&ﬁ}”

J
Xl;I [1 +(d]—)2+(dj—)2]1/2

¢}0) = ¢.i + ccj‘s¢j ,

( 1 + 6'2 CJZ) 1/2
where E, is the ground state energy determined from Eq.
(4.3), d; are constants that will be chosen variationally, 5, is
an orbital polarized in the direction of the applied electric
field, and 8¢} is an orbital orthogonal to ¢{”. As previously
mentioned, the functional L = (¥ |H — id/dt |¥ ) is an up-
per bound to the polarizability. Minimizing L in a way anal-
ogous to Sec. III, we obtain

¥, =

oY, = Kse—*rcos 6,
m
U, =Ey3,
Lo, =alo) = 2[Tlk)1*[A€s) + J (x)]

[4é,(Kk) + I (K)]? — 0* — 2E (K,0,@popvem)
(4.4)
Alk,0)
1+ {4 '(c0) + D '(k,0)1 /4 (k,0)}
Uo = (5¢1|Uo|¢1>,
A€, = (5'/’1|h1'5¢1> — €y
7= (SU6HENY,506) — GSI, 1)

J

E (K’w’asolvent) =

< 7y >
A = A . ZAG +J y
<; j AJZ _ wz R ( 1 )
A'= <4z ditol) (Tz(_s)yﬁ(zo') ,
i< (A 12 - 02)2 l , R

_ yauepe
D={(4%54,4; - >'A€+J,
( R e ) Mt

A4, = (88" |h;|88{") — €, + (58" |V 166")

— (B2 |Vi1 200,

V= (84 1|V 1 )5¢n),

T = (5418 2U; 1686 5) — (#°851U,16%),

U = (86'"87|U;|¢ 756 ")
L must then be minimized with respect to « at each value of
o. To evaluate L at a given value of w and « typically took 5

min of VAX 11/780 time, so this was not a difficult calcula-
tion.

V. LIMITING FORMS

In this section, we shall show how our formulation re-
duces to the Drude limit, the continuum limit, and the Sax-
ton—-Deutch limit. It is educational to do this because the
limiting process allows the explicit demonstration of the as-
sumptions made in each case.

The Drude limit is obtained when the electronic charge
distributions on the solute and solvent molecules become
tightly held relative to the size of the molecules. In this case,
the overlap of the molecular wave functions will be negligi-
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ble and we can replace the intermolecular Coulomb interac-
tions by their long range limit, i.e., dipole—dipole. Thus, we
replace all the intermolecular interactions by dipole-dipole
interactions. Then by symmetry the ground state energy
does not change and J (k}-0. In addition, one can show that

E (16,0,&go1vent) = E (@govent )

where E (@, q1yen: ) WOUld be the Drude result described in Ref.
3 if the Padé approximente to E (a) was derived by differenti-
ating the results of Rushbrooke, Stell, and Hdye?° rather
than differentiating and re-Padéing. Thus, a(®) can be writ-
ten

1

a5 (@) — 2E (Qsorvent)

which is the Drude form of Ref. 3.

To obtain the continuum limit, we must make two more
assumptions. Since the continuum limit implies that the sol-
vent molecules are much smaller than the solute molecule,
we should expect the density of solvent atoms to be uniform
outside a sphere corresponding to the solute’s hard core.
Hence, we replace the solute—solvent radial distribution
function by a step function g{(r) = 8 (r — R,), where R, is a
measure of the free volume available to the solute. If we also
ignore local field effects on the solvent molecules, which
amounts to ignoring the screening of solvent—solute interac-
tions, we can obtain the continuum limit. The lack of local
field effects allows us to ignore three body interactions. The
shift in the ground state energy becomes

AE= —A.
For i chosen as in the continuum Sec. II and ¢ and 8¢ of
the form described in Sec. IV and shown here explicitly:

¢. _ ﬁ3/2 e—B’rz/Z
J

a(w) =

= ,

512 N
8¢; = \/—2176/4 e~?"r.R),
B? = ma,,

it is easily shown that

1
AE = —4mpa
PE IR,

1+ X+3X2+ X34

(1+2X+3X*+XY)e ¥

aS
2R,

(5.1)

with
dmpa = 3(e — 1)/(e + 2)~€e— 1
=€l —1/e)~1—1/e=aq,

for € ~ 1. We note that, apart from an additive constant, Eq.
(5.1) is the expression derived earlier in the continuum limit.
The polarizability is obtained by choosing the solvent excit-
ed orbital to be directed along the local electric field at that
point (the first order perturbation guess to the wave function)
and ignoring any overlap effects with &¢; :

5/2 ~
5¢)" = % e P < E)),

E = N,[ —V, f dr' ¢(r')¢5¢(r’)V(r,r’,Rj)],

where R; is the distance between the centers of the solute and

3219

thejth solvent, and N, is a normalization constant. From Eq.
(4.4), one can show that the continuum limit of the polariza-
bility is
Uo— Vi
1 1
TW) a1 — Polswy — (i — Pol) |

de, +J—A4,

E (k,@,@opven ) — @, K4,
and
2V,

L .
T A’ — o’ 24a,K

Thus, our result for the polarizability reduces to the contin-
uum result.

To obtain the Saxton—-Deutch-like result, we note that
the absorption frequency is given by the roots of the follow-
ing equation:

[AEI(K) + J(K)]2 - (L)2 —2F (K7w1asolvent) =0
or
E (K’w’asolvcnt)

de (k) + I (k)
Thus, the form of the Saxton—Deutch result is obtained by

combining
J(K) _ E(K’w’asolvent)
Aée(k) + J (k)
into one two-body integral and ignoring all higher order
terms. Thus

w=AE,(x) —

o=AE (k) + J (k) —

14 (k,w)
deg 1T TTW

VI. CALCULATIONS

We begin by discussing the form of the solute and sol-
vent wave functions. As a simple application, we shall as-
sume the solute is a hydrogen atom with ground and excited
state wave functions corresponding to 1s and 2p orbitals:

Al P
e M SY,=_|—e "rcosb,
T T

¥ =
where A and « are variational parameters. For our current
study, we are interested in rare gas solvents so that we can’
compare our results with the MSA calculations. Since MSA
calculations assume the solvent atoms can be described by
one electron models (Drude oscillators), we use a single elec-
tron model for our solvents developed by McGinnies and
Jansen.?! The function is assumed to be of the form

6 = B> o8

J ﬂg, /4 ’
where S = mw, and w, is the first electronic transition in
the solvent. The polarizability is given by a, = e*/mw}?. For
simplicity we assume that m = 1, and, hence choose e to give
the correct polarizability. This model has the advantage
that, for fixed @, and a,, increasing 8 (and m) will give the
Drude oscillator result for the solvent. While there are cer-
tainly more realistic models for the solvent involving more
electrons, we choose a simple form in the hope that the ma-
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jority of the physics is not overly sensitive to this choice. The
modeling of many electron atoms by a single electron is not
as arbitrary as it may seem. Indeed, the van der Waals inter-
action between rare gas atoms has been adequately repre-
sented by models of this form. Using a variant of the proce-
dure described in Ref. 21, we vary the effective electron
charge until the polarizability of the atom is correct. Thus,
we are in a sense renormalizing the interaction. More de-
tailed calculations can use the correct number of electrons in
a manner described by Buckingham.?* All interactions are
then assumed to be Coulombic, with the form

e e e e
! R, Ty |r1_le Irj —Ry| '
e & e’ e’
Uj=—+—— - )

R, r, Irn—RJ| [r,—R|]
R,.j=|R,-—Rj| r,.j=|r,-—rj|.

R, is the nuclear position and r; is the electron position. The
evaluation of the electronic integrals is accomplished most
easily by Fourier transforming the integrals:

[araw o) oot

_ 47 _d_Iﬁefﬂ(-R,.,
27?) K?

p:(K) = fdr pi(r)e®r,

W,=U; or V,
pilr) = [(r)]*.

In our calculations, the averages over R were performed by
assuming that the configurational probabilities are deter-
mined primarily by hard core interactions. Thus we assume
that the two- and three-body radial distribution functions
are determined by those of a system of hard spheres with
radii determined from liquid state measurements.

As a test, we can evaluate the shift in the 1s-2p transition
for a system in which the solvent-solvent and solute-solvent
hard core radii are the same. In atomic units, we choose the
polarizability and the bare solvent frequency to be ag

= a,/03, = 0.01 and w, = 0.5 (0, is the solvent-solvent
hard core diameter). In atomic hydrogen, the excitation fre-
quency is 0.375, thus choosing w, = 0.5 should ensure that
the solvent atoms’ bare polarizability is not dramatically al-
tered. We choose a density of p* = po;, = 0.8, a high
enough density so that three-body interactions should be im-
portant. Given a¥, we can calculate €, (for use in the contin-
uum calculation) from the Clausius—Mossotti equation

1—1/¢€,
4rp*

[1—pi(K)] [1—po( — K]},

3 € —1
4rp* €, +2
Further, since the hard core diameters are the same, we can
compare our results with those of Chandler, Schweizer, and
Wolynes,? who studied a system of Drude oscillators. In the
Drude oscillator study, the solvent polarizability was renor-
malized, so we have performed two Drude calculations, one
with and one without a renormalized polarizability. The ef-
fect of renormalizing the solvent polarizability on the solute

o~
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FIG. 1. The shift in the solute frequency as a function of hard sphere radius.
The dotted line is the MSA result, the dashed line the continuum result, and
the solid line our result. Energies are measured relative to the atomic transi-
tion.

shift is minor. In Fig. 1 we present the results of the different
methods of calculating the spectral shift: the continuum me-
dium, our discrete solvent, and the two MSA calculations.
We see that only at large hard core diameters do any of the
more approximate models come close to our Hartree RPA
result.

The largest contribution to the frequency shift is J («),
the first order shift in energy. Since this term is absent (due to
symmetry) from the MSA calculation, we expect the MSA
result to be adequate only when the first order term is can-
celled by exchange effects. If this were so, we would expect
the MSA to be accurate if E (K,@,&opven: ) approaches the E ()
calculated by the MSA. In Fig. 2, we display the ratio of our
E (a) to the MSA E (a). As can be seen even if the first order
term is negligible, there are major differences between our
result and the MSA result.

Without renormalizing the solvent frequency, we do not
expect the solvent line to be broadened unless it has some
intrinsic line shape. This is due to the fact that the absorption
then involves the mixing of delta functions, which can only
result in delta functions. However, if the solvent frequency is
renormalized, the solvent band can overlap the solute fre-
quency and add shape to the line. This would involve either
using the MSA result for the solvent (as an approximation)
or developing an equation for the solvent polarizability that
is analagous to Eq. (4.4) and solving for the solute and sol-
vent polarizabilities self-consistently.

Vil. CONCLUSION

We have developed an expression for the polarizability
of a solute molecule in a solvent. It includes the effects of the
finite size charge distributions of the molecules and shows
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FIG. 2. Theratio of E (&) as determined here and E (@) from the MSA., Trian-
gles are for the MSA with renormalized solvent polarizabilities and circles
are for the MSA without renormalized solvent polarizabilities.

the details of the solute wave function, both significant ad-
vances over previous work. In addition, we have shown how
our result reduces to the more approximate theories in cer-
tain limits, which should enable one to decide when the more
approximate theories are applicable. We have studied a sim-
ple model system using our method and have seen that sig-
nificant differences do occur between our theory and pre-
vious theories. Although we have so far ignored exchange,
future work will show how to include this effect.”

APPENDIX

Here we show that the functions used in sections III and
IV are upper bounds to the polarizabilities following the
ideas of Karplus'® and Karplus and Kolker.!” We assume a
many-body Hamiltonian of the form

H=H,+V, e+ V_ e (A1)

with wave functions

V= (P, + 6V, e +6W_e "“)e Bt (A2)
with

H,¥,=E,V,. (A3)
Consider the functional

L=(VY|H|V)+(¥|—ild/dt)|¥). (A4)

In the long time limit, we need only consider the time inde-
pendent part of L, as the time dependent part will average to
zero. Thus, we find

L = (8%, |H — E, + 0|6¥, )
+ (¥ _|H — Ey— 0|6¥_)
+ SV |V, W) + (6¥_|V_|5%)
+ (W V_|8Y,) + (W| V. |6¥_). (AS)

If we minimize L with respect to 6%, and 6¥_, we find
(H—Ey+0)|6¥,) + V., |¥)=0, (A6a)
(H—Ey—w)|6¥_) + V_|¥,) =0, (A6b)

and
Lo = (Wo|V |6W,) + (¥|V_|6¥_) =a, (A7)

which is the polarizability. Hence, if we could solve Eqgs. (A6)
exactly, we would find the polarizability. If, however, we
cannot find an exact pair of §¥_ and §¥_, we still have a
bound on a. We can show this by considering

3(:%; = (S6¥,)|H—E,+0l85¥,)),  (ASa)
L __ (56%_)\H — E, — 08(6¥_)) ASb
m—(a( ~)| — o_“"( )2 { )

Expanding §(6¥ ) and §(6¥_) in terms of the eigenfunc-
tions of H,

86, ) =2 ai" ¢ 66V )=3 a7 ¢ (A9)
7 7
we find Eqs. (A8) become
S6°L
soep 24 B ~Eoto) 20 forallo, (ALl
5L

S6V_) = ,2 a7 (E; —Ey—w) > 0 for o <E; — E,.
(A10b)

Thus, L is an upper bound to a for @ less than the first
excitation frequency of H.
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