218 research outputs found

    The Digital Education Hub Design Process

    Get PDF
    The Digital Education Hub Design Process is designed to give teachers, educators, and curriculum designers a pathway for developing, enacting, and evaluating lesson plans, units and modules, and learning experiences in a range of settings.Supported in part by an Indiana Governor's Emergency Education Relief Grant

    The heavy top quark in the two Higgs doublet model

    Full text link
    Constraints on the two Higgs doublet model are presented, assuming a top mass of 174 ±\pm 17 GeV. We concentrate primarily on the ``type II'' model, where up--type quarks receive their mass from one Higgs doublet, and down--type quarks receive their mass from the second doublet. High energy constraints derived from the WW mass, the full width of the ZZ and the bbˉb \bar b partial width of the ZZ are combined with low energy constraints from Γ(bsγ)\Gamma(b\to s \gamma), Γ(bcτνˉτ)\Gamma(b \to c \tau \bar\nu_\tau) and B0B^0-Bˉ0\bar B^0 mixing to determine the experimentally favored configurations of the model. This combination of observables rules out small charged Higgs masses and small values of tanβ\tan\beta, and provides some information about the neutral Higgs masses and the mixing angle α\alpha. In particular, constraints derived from the ρ\rho parameter rule out configurations where the charged Higgs is much heavier or much lighter than the neutral Higgses. We discuss a scenario where Γ(Zbbˉ)\Gamma(Z\to b \bar b) is enhanced relative to the standard model result, which unfortunately is on the verge of being ruled out by the combination of Γ(bsγ)\Gamma(b\to s \gamma) and ρ\rho parameter constraints. Implications for various extensions of the standard model are briefly discussed.Comment: 26 page

    Ventilation of the Arctic Ocean: Mean ages and inventories of anthropogenic CO2 and CFC-11

    Get PDF
    The Arctic Ocean constitutes a large body of water that is still relatively poorly surveyed because of logistical difficulties, although the importance of the Arctic Ocean for global circulation and climate is widely recognized. For instance, the concentration and inventory of anthropogenic CO2 (C ant) in the Arctic Ocean are not properly known despite its relatively large volume of well-ventilated waters. In this work, we have synthesized available transient tracer measurements (e.g., CFCs and SF6) made during more than two decades by the authors. The tracer data are used to estimate the ventilation of the Arctic Ocean, to infer deep-water pathways, and to estimate the Arctic Ocean inventory of C ant. For these calculations, we used the transit time distribution (TTD) concept that makes tracer measurements collected over several decades comparable with each other. The bottom water in the Arctic Ocean has CFC values close to the detection limit, with somewhat higher values in the Eurasian Basin. The ventilation time for the intermediate water column is shorter in the Eurasian Basin (∼200 years) than in the Canadian Basin (∼300 years). We calculate the Arctic Ocean C ant inventory range to be 2.5 to 3.3 Pg-C, normalized to 2005, i.e., ∼2% of the global ocean C ant inventory despite being composed of only ∼1% of the global ocean volume. In a similar fashion, we use the TTD field to calculate the Arctic Ocean inventory of CFC-11 to be 26.2 ± 2.6 × 106 moles for year 1994, which is ∼5% of the global ocean CFC-11 inventor

    The Five Senses of STEM Learning

    Get PDF
    The Five Senses of STEM Learning is a framework and approach to teaching, learning, curriculum, and pedagogy deeply grounded in Culturally Relevant Pedagogy (Ladson-Billings, 1995, 2016) and Universal Design for Learning (Meyer et al., 2013; Rose & Meyer, 2002) while also incorporating a range of ideas and concepts that are specific to STEM learning and strengthen the connections to the particular contexts of the science, technology, engineering, or mathematics learning environment.Funded in part by an Indiana Department of Education HB-1008 Student Learning Recovery Plan grant

    The role of specific biomarkers, as predictors of post-operative complications following flexible ureterorenoscopy (FURS), for the treatment of kidney stones: a single-centre observational clinical pilot-study in 37 patients

    Get PDF
    Abstract: Background: The number of patients diagnosed and subsequently treated for kidney stones is increasing, and as such the number of post-operative complications is likely to increase. At present, little is known about the role of specific biomarkers, following flexible ureterorenoscopy (FURS) for the surgical treatment of kidney stones. The main aim of the study was to evaluate the role of kidney and infection biomarkers, in patients undergoing FURS. Methods: Included were 37 patients (24 males, 13 females), who underwent elective FURS, for the treatment of kidney stones. Venous blood samples were collected from each patient: pre-operatively, and at 30 min, 2 and 4 h post-operatively. Changes to kidney (NGAL, Cystatin-C) and infection (MPO, PCT) biomarkers was quantified by means of ELISA, Biomerieux mini-vidas and Konelab 20 analysers. Results: Four patients developed post-operative complications (3 - UTIs with urinary retention, 1 - urosepsis. NGAL concentration increased significantly following FURS (p = 0.034). Although no significant changes were seen in Cystatin C, MPO and PCT (p ≥ 0.05) some key clinical observation were noted. Limiting factors for this study were the small number of patients recruited and restriction in blood sampling beyond 4 h. Conclusions: Although not confirmative, changes seen to biomarkers such as Cystatin C, NGAL and MPO in our observational clinical pilot-study may warrant further investigation, involving larger cohorts, to fully understand the role of these biomarkers and their potential association with post-operative complications which can develop following FURS

    Shake a tail feather: the evolution of the theropod tail into a stiff aerodynamic surface

    Get PDF
    Theropod dinosaurs show striking morphological and functional tail variation; e.g., a long, robust, basal theropod tail used for counterbalance, or a short, modern avian tail used as an aerodynamic surface. We used a quantitative morphological and functional analysis to reconstruct intervertebral joint stiffness in the tail along the theropod lineage to extant birds. This provides new details of the tail's morphological transformation, and for the first time quantitatively evaluates its biomechanical consequences. We observe that both dorsoventral and lateral joint stiffness decreased along the non-avian theropod lineage (between nodes Theropoda and Paraves). Our results show how the tail structure of non-avian theropods was mechanically appropriate for holding itself up against gravity and maintaining passive balance. However, as dorsoventral and lateral joint stiffness decreased, the tail may have become more effective for dynamically maintaining balance. This supports our hypothesis of a reduction of dorsoventral and lateral joint stiffness in shorter tails. Along the avian theropod lineage (Avialae to crown group birds), dorsoventral and lateral joint stiffness increased overall, which appears to contradict our null expectation. We infer that this departure in joint stiffness is specific to the tail's aerodynamic role and the functional constraints imposed by it. Increased dorsoventral and lateral joint stiffness may have facilitated a gradually improved capacity to lift, depress, and swing the tail. The associated morphological changes should have resulted in a tail capable of producing larger muscular forces to utilise larger lift forces in flight. Improved joint mobility in neornithine birds potentially permitted an increase in the range of lift force vector orientations, which might have improved flight proficiency and manoeuvrability. The tail morphology of modern birds with tail fanning capabilities originated in early ornithuromorph birds. Hence, these capabilities should have been present in the early Cretaceous, with incipient tail-fanning capacity in the earliest pygostylian birds

    STAGES IN THE ORIGIN OF VERTEBRATES: ANALYSIS BY MEANS OF SCENARIOS

    Full text link
    Vertebrates lack an epidermal nerve plexus. This feature is common to many invertebrates from which vertebrates differ by an extensive set of shared-derived characters (synapomorphies) derived from the neural crest and epidermal neurogenic placodes. Hence, the hypothesis that the developmental precursor of the epidermal nerve plexus may be homologous to the neural crest and epidermal neurogenic placodes. This account attempts to generate a nested set of scenarios for the prevertebrate-vertebrate transition, associating a presumed sequence of behavioural and environmental changes with the observed phenotypic ones. Toward this end, it integrates morphological, developmental, functional (physiological/behavioural) and some ecological data, as many phenotypic shifts apparently involved associated transitions in several aspects of the animals. The scenarios deal with the origin of embryonic and adult tissues and such major organs as the notochord, the CNS, gills and kidneys and propose a sequence of associated changes. Alternative scenarios are stated as the evidence often remains insufficient for decision. The analysis points to gaps in comprehension of the biology of the animals and therefore suggests further research.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72629/1/j.1469-185X.1989.tb00471.x.pd

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Poly Economics-Capitalism, Class, and Polyamory

    Get PDF
    Academic research and popular writing on nonmonogamy and polyamory has so far paid insufficient attention to class divisions and questions of political economy. This is striking since research indicates the significance of class and race privilege within many polyamorous communities. This structure of privilege is mirrored in the exclusivist construction of these communities. The article aims to fill the gap created by the silence on class by suggesting a research agenda which is attentive to class and socioeconomic inequality. The paper addresses relevant research questions in the areas of intimacy and care, household formation, and spaces and institutions and advances an intersectional perspective which incorporates class as nondispensable core category. The author suggests that critical research in the field can stimulate critical self-reflexive practice on the level of community relations and activism. He further points to the critical relevance of Marxist and Postmarxist theories as important resources for the study of polyamory and calls for the study of the contradictions within poly culture from a materialist point of view. © 2013 Springer Science+Business Media New York
    corecore