722 research outputs found

    Parasitophorous vacuole poration precedes its rupture and rapid host erythrocyte cytoskeleton collapse in Plasmodium falciparum egress.

    Get PDF
    In the asexual blood stages of malarial infection, merozoites invade erythrocytes and replicate within a parasitophorous vacuole to form daughter cells that eventually exit (egress) by sequential rupture of the vacuole and erythrocyte membranes. The current model is that PKG, a malarial cGMP-dependent protein kinase, triggers egress, activating malarial proteases and other effectors. Using selective inhibitors of either PKG or cysteine proteases to separately inhibit the sequential steps in membrane perforation, combined with video microscopy, electron tomography, electron energy loss spectroscopy, and soft X-ray tomography of mature intracellular Plasmodium falciparum parasites, we resolve intermediate steps in egress. We show that the parasitophorous vacuole membrane (PVM) is permeabilized 10-30 min before its PKG-triggered breakdown into multilayered vesicles. Just before PVM breakdown, the host red cell undergoes an abrupt, dramatic shape change due to the sudden breakdown of the erythrocyte cytoskeleton, before permeabilization and eventual rupture of the erythrocyte membrane to release the parasites. In contrast to the previous view of PKG-triggered initiation of egress and a gradual dismantling of the host erythrocyte cytoskeleton over the course of schizont development, our findings identify an initial step in egress and show that host cell cytoskeleton breakdown is restricted to a narrow time window within the final stages of egress

    A rapid in vivo screen for pancreatic ductal adenocarcinoma therapeutics

    Get PDF
    Pancreatic ductal adenocarcinoma (PDA) is the fourth leading cause of cancer-related deaths in the United States, and is projected to be second by 2025. It has the worst survival rate among all major cancers. Two pressing needs for extending life expectancy of affected individuals are the development of new approaches to identify improved therapeutics, addressed herein, and the identification of early markers. PDA advances through a complex series of intercellular and physiological interactions that drive cancer progression in response to organ stress, organ failure, malnutrition, and infiltrating immune and stromal cells. Candidate drugs identified in organ culture or cell-based screens must be validated in preclinical models such as KIC (p48Cre;LSL-KrasG12D;Cdkn2af/f) mice, a genetically engineered model of PDA in which large aggressive tumors develop by 4 weeks of age. We report a rapid, systematic and robust in vivo screen for effective drug combinations to treat Kras-dependent PDA. Kras mutations occur early in tumor progression in over 90% of human PDA cases. Protein kinase and G-protein coupled receptor (GPCR) signaling activates Kras. Regulators of G-protein signaling (RGS) proteins are coincidence detectors that can be induced by multiple inputs to feedback-regulate GPCR signaling. We crossed Rgs16::GFP bacterial artificial chromosome (BAC) transgenic mice withKIC mice and show that the Rgs16::GFP transgene is a KrasG12D-dependent marker of all stages of PDA, and increases proportionally to tumor burden in KIC mice. RNA sequencing (RNA-Seq) analysis of cultured primary PDA cells reveals characteristics of embryonic progenitors of pancreatic ducts and endocrine cells, and extraordinarily high expression of the receptor tyrosine kinase Axl, an emerging cancer drug target. In proof-of-principle drug screens, we find that weanling KIC mice with PDA treated for 2 weeks with gemcitabine (with or without Abraxane) plus inhibitors of Axl signaling (warfarin and BGB324) have fewer tumor initiation sites and reduced tumor size compared with the standard-of-care treatment. Rgs16::GFP is therefore an in vivo reporter of PDA progression and sensitivity to new chemotherapeutic drug regimens such as Axl-targeted agents. This screening strategy can potentially be applied to identify improved therapeutics for other cancers

    A spiral scaffold underlies cytoadherent knobs in Plasmodium falciparum-infected erythrocytes

    Get PDF
    Much of the virulence of Plasmodium falciparum malaria is caused by cytoadherence of infected erythrocytes, which promotes parasite survival by preventing clearance in the spleen. Adherence is mediated by membrane protrusions known as knobs, whose formation depends on the parasite-derived, knob-associated histidine-rich protein (KAHRP). Knobs are required for cytoadherence under flow conditions, and they contain both KAHRP and the parasite-derived erythrocyte membrane protein PfEMP1. Using electron tomography, we have examined the three-dimensional structure of knobs in detergent-insoluble skeletons of P. falciparum 3D7 schizonts. We describe a highly organised knob skeleton composed of a spiral structure coated by an electron dense layer underlying the knob membrane. This knob skeleton is connected by multiple links to the erythrocyte cytoskeleton. We used immuno-electron microscopy to locate KAHRP in these structures. The arrangement of membrane proteins in the knobs, visualised by high resolution freeze fracture scanning electron microscopy, is distinct from that in the surrounding erythrocyte membrane, with a structure at the apex that likely represents the adhesion site. Thus, erythrocyte knobs in P. falciparum infection contain a highly organised skeleton structure underlying a specialised region of membrane. We propose that the spiral and dense coat organise the cytoadherence structures in the knob, and anchor them into the erythrocyte cytoskeleton. The high density of knobs and their extensive mechanical linkage suggest an explanation for the rigidification of the cytoskeleton in infected cells, and for the transmission to the cytoskeleton of shear forces experienced by adhering cells

    Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment

    Get PDF
    Land use and related pressures have reduced local terrestrial biodiversity, but it is unclear how the magnitude of change relates to the recently proposed planetary boundary (“safe limit”). We estimate that land use and related pressures have already reduced local biodiversity intactness—the average proportion of natural biodiversity remaining in local ecosystems—beyond its recently proposed planetary boundary across 58.1% of the world’s land surface, where 71.4% of the human population live. Biodiversity intactness within most biomes (especially grassland biomes), most biodiversity hotspots, and even some wilderness areas is inferred to be beyond the boundary. Such widespread transgression of safe limits suggests that biodiversity loss, if unchecked, will undermine efforts toward long-term sustainable development

    COSMOS: COmparing Standard Maternity care with One-to-one midwifery Support: a randomised controlled trial

    Get PDF
    Background: In Australia and internationally, there is concern about the growing proportion of women giving birth by caesarean section. There is evidence of increased risk of placenta accreta and percreta in subsequent pregnancies as well as decreased fertility; and significant resource implications. Randomised controlled trials (RCTs) of continuity of midwifery care have reported reduced caesareans and other interventions in labour, as well as increased maternal satisfaction, with no statistically significant differences in perinatal morbidity or mortality. RCTs conducted in the UK and in Australia have largely measured the effect of teams of care providers (commonly 6&ndash;12 midwives) with very few testing caseload (one-to-one) midwifery care. This study aims to determine whether caseload (one-to-one) midwifery care for women at low risk of medical complications decreases the proportion of women delivering by caesarean section compared with women receiving \u27standard\u27 care. This paper presents the trial protocol in detail.Methods/design: A two-arm RCT design will be used. Women who are identified at low medical risk will be recruited from the antenatal booking clinics of a tertiary women\u27s hospital in Melbourne, Australia. Baseline data will be collected, then women randomised to caseload midwifery or standard low risk care. Women allocated to the caseload intervention will receive antenatal, intrapartum and postpartum care from a designated primary midwife with one or two antenatal visits conducted by a \u27back-up\u27 midwife. The midwives will collaborate with obstetricians and other health professionals as necessary. If the woman has an extended labour, or if the primary midwife is unavailable, care will be provided by the back-up midwife. For women allocated to standard care, options include midwifery-led care with varying levels of continuity, junior obstetric care and community based general medical practitioner care. Data will be collected at recruitment (self administered survey) and at 2 and 6 months postpartum by postal survey. Medical/obstetric outcomes will be abstracted from the medical record. The sample size of 2008 was calculated to identify a decrease in caesarean birth from 19 to 14% and detect a range of other significant clinical differences. Comprehensive process and economic evaluations will be conducted.Trial registration: Australian New Zealand Clinical Trials Registry ACTRN012607000073404.<br /

    Digital Traces of Distinction? Popular Orientation and User-Engagement with Status Hierarchies in TripAdvisor Reviews of Cultural Organizations

    Get PDF
    Cultural organizations are categorized by cultural products (high or popular culture) and by organizational form (nonprofit or commercial). In sociology, these classifications are understood predominantly through a Bourdieusian lens, which links cultural consumption to habitus and a class-based struggle for distinction. However, people’s engagement with institutionalized cultural classifications may be expressed differently on the Internet, where a culture of hierarchy-free equality is (sometimes) idealized. Using digital trace data from a representative sample of 280 user-generated reviews of four London cultural organizations, we find that reviewers are concerned with practical issues over cultural content, displaying a popular orientation to cultural consumption (an “audience-focus” or an “embodied” approach). A very small minority of reviewers claim status honor on a variety of bases, including symbolic mastery of traditional cultural capital. Overall, we find an online space in the cultural sphere in which cultural hierarchies are not relevant

    MicroRNA Regulation of Human Protease Genes Essential for Influenza Virus Replication

    Get PDF
    Influenza A virus causes seasonal epidemics and periodic pandemics threatening the health of millions of people each year. Vaccination is an effective strategy for reducing morbidity and mortality, and in the absence of drug resistance, the efficacy of chemoprophylaxis is comparable to that of vaccines. However, the rapid emergence of drug resistance has emphasized the need for new drug targets. Knowledge of the host cell components required for influenza replication has been an area targeted for disease intervention. In this study, the human protease genes required for influenza virus replication were determined and validated using RNA interference approaches. The genes validated as critical for influenza virus replication were ADAMTS7, CPE, DPP3, MST1, and PRSS12, and pathway analysis showed these genes were in global host cell pathways governing inflammation (NF-κB), cAMP/calcium signaling (CRE/CREB), and apoptosis. Analyses of host microRNAs predicted to govern expression of these genes showed that eight miRNAs regulated gene expression during virus replication. These findings identify unique host genes and microRNAs important for influenza replication providing potential new targets for disease intervention strategies

    Life, time, and the organism:Temporal registers in the construction of life forms

    Get PDF
    In this paper, we articulate how time and temporalities are involved in the making of living things. For these purposes, we draw on an instructive episode concerning Norfolk Horn sheep. We attend to historical debates over the nature of the breed, whether it is extinct or not, and whether presently living exemplars are faithful copies of those that came before. We argue that there are features to these debates that are important to understanding contemporary configurations of life, time and the organism, especially as these are articulated within the field of synthetic biology. In particular, we highlight how organisms are configured within different material and semiotic assemblages that are always structured temporally. While we identify three distinct structures, namely the historical, phyletic and molecular registers, we do not regard the list as exhaustive. We also highlight how these structures are related to the care and value invested in the organisms at issue. Finally, because we are interested ultimately in ways of producing time, our subject matter requires us to think about historiographical practice reflexively. This draws us into dialogue with other scholars interested in time, not just historians, but also philosophers and sociologists, and into conversations with them about time as always multiple and never an inert background
    corecore