378 research outputs found
Atomistic characterization of the active-site solvation dynamics of a model photocatalyst
The interactions between the reactive excited state of molecular photocatalysts and surrounding solvent dictate reaction mechanisms and pathways, but are not readily accessible to conventional optical spectroscopic techniques. Here we report an investigation of the structural and solvation dynamics following excitation of a model photocatalytic molecular system [Ir-2(dimen)(4)](2+), where dimen is para-diisocyanomenthane. The time-dependent structural changes in this model photocatalyst, as well as the changes in the solvation shell structure, have been measured with ultrafast diffuse X-ray scattering and simulated with Born-Oppenheimer Molecular Dynamics. Both methods provide direct access to the solute-solvent pair distribution function, enabling the solvation dynamics around the catalytically active iridium sites to be robustly characterized. Our results provide evidence for the coordination of the iridium atoms by the acetonitrile solvent and demonstrate the viability of using diffuse X-ray scattering at free-electron laser sources for studying the dynamics of photocatalysis.1
Imaging ultrafast excited state pathways in transition metal complexes by X-ray transient absorption and scattering using X-ray free electron laser source
This report will describe our recent studies of transition metal complex structural dynamics on the fs and ps time scales using an X-ray free electron laser source, Linac Coherent Light Source (LCLS). Ultrafast XANES spectra at the Ni K-edge of nickel(II) tetramesitylporphyrin (NiTMP) were successfully measured for optically excited state at a timescale from 100 fs to 50 ps, providing insight into its sub-ps electronic and structural relaxation processes. Importantly, a transient reduced state Ni(I) (π, 3d(x2−y2)) electronic state is captured through the interpretation of a short-lived excited state absorption on the low-energy shoulder of the edge, which is aided by the computation of X-ray transitions for postulated excited electronic states. The observed and computed inner shell to valence orbital transition energies demonstrate and quantify the influence of electronic configuration on specific metal orbital energies. A strong influence of the valence orbital occupation on the inner shell orbital energies indicates that one should not use the transition energy from 1s to other orbitals to draw conclusions about the d-orbital energies. For photocatalysis, a transient electronic configuration could influence d-orbital energies up to a few eV and any attempt to steer the reaction pathway should account for this to ensure that external energies can be used optimally in driving desirable processes. NiTMP structural evolution and the influence of the porphyrin macrocycle conformation on relaxation kinetics can be likewise inferred from this study
Introducing a standard method for experimental determination of the solvent response in laser pump, X-ray probe time-resolved wide-angle X-ray scattering experiments on systems in solution
WOS:000323520600021International audienceIn time-resolved laser pump, X-ray probe wide-angle X-ray scattering experiments on systems in solution the structural response of the system is accompanied by a solvent response. The solvent response is caused by reorganization of the bulk solvent following the laser pump event, and in order to extract the structural information of the solute, the solvent response has to be treated. Methodologies capable of doing so include both theoretical modelling and experimental determination of the solvent response. In the work presented here, we have investigated how to obtain a reproducible solvent response-the solvent term-experimentally when applying laser pump, X-ray probe time-resolved wide-angle X-ray scattering. The solvent term describes difference scattering arising from the structural response of the solvent to changes in the hydrodynamic parameters: pressure, temperature and density. We present results based on NIR and dye mediated solvent heating, and demonstrate that the solvent response is independent of the heating method. The NIR heating is shown to be rendered unusable by higher order effects under certain experimental conditions, while the dye mediated solvent heating is demonstrated to exhibit first order behaviour with respect to the amount of energy deposited in the solution. We introduce a standardized method for recording solvent responses in laser pump, X-ray probe time-resolved X-ray wide-angle scattering experiments by using dye mediated solvent heating. Furthermore, we have generated a library of solvent terms, which can be used to describe the solvent term in any TRWAXS experiment, and made it available online
Ultrafast Excited State Relaxation of a Metalloporphyrin Revealed by Femtosecond X-ray Absorption Spectroscopy
Photoexcited Nickel(II) tetramesitylporphyrin
(NiTMP), like many
open-shell metalloporphyrins, relaxes rapidly through multiple electronic
states following an initial porphyrin-based excitation, some involving
metal centered electronic configuration changes that could be harnessed
catalytically before excited state relaxation. While a NiTMP excited
state present at 100 ps was previously identified by X-ray transient
absorption (XTA) spectroscopy at a synchrotron source as a relaxed
(d,d) state, the lowest energy excited state (<i>J. Am. Chem.
Soc.</i>, <b>2007</b>, <i>129</i>, 9616 and <i>Chem. Sci.</i>, <b>2010</b>, <i>1</i>, 642),
structural dynamics before thermalization were not resolved due to
the ∼100 ps duration of the available X-ray probe pulse. Using
the femtosecond (fs) X-ray pulses of the Linac Coherent Light Source
(LCLS), the Ni center electronic configuration from the initial excited
state to the relaxed (d,d) state has been obtained via ultrafast Ni
K-edge XANES (X-ray absorption near edge structure) on a time scale
from hundreds of femtoseconds to 100 ps. This enabled the identification
of a short-lived Ni(I) species aided by time-dependent density functional
theory (TDDFT) methods. Computed electronic and nuclear structure
for critical excited electronic states in the relaxation pathway characterize
the dependence of the complex’s geometry on the electron occupation
of the 3d orbitals. Calculated XANES transitions for these excited
states assign a short-lived transient signal to the spectroscopic
signature of the Ni(I) species, resulting from intramolecular charge
transfer on a time scale that has eluded previous synchrotron studies.
These combined results enable us to examine the excited state structural
dynamics of NiTMP prior to thermal relaxation and to capture intermediates
of potential photocatalytic significance
The social affordances of flashpacking: exploring the mobility nexus of travel and communication
The proliferation of digital devices and online social media and networking technologies has altered the backpacking landscape in recent years. Thanks to the ready availability of online communication, travelers are now able to stay in continuous touch with friends, family and other travelers while on the move. This article introduces the practice of ‘flashpacking’ to describe this emerging trend and interrogates the patterns of connection and disconnection that become possible as corporeal travel and social technologies converge. Drawing on the concepts of ‘assemblages’ and ‘affordances’, we outline several aspects of this new sociality: virtual mooring, following, collaborating, and (dis)connecting. The conclusion situates this discussion alongside broader questions about the shifting nature of social life in an increasingly mobile and mediated world and suggests directions for future research at the intersection of tourism and technology
Atomistic characterization of the active-site solvation dynamics of a model photocatalyst
The interactions between the reactive excited state of molecular photocatalysts and surrounding solvent dictate reaction mechanisms and pathways, but are not readily accessible to conventional optical spectroscopic techniques. Here we report an investigation of the structural and solvation dynamics following excitation of a model photocatalytic molecular system [Ir 2 (dimen) 4 ] 2+, where dimen is para-diisocyanomenthane. The time-dependent structural changes in this model photocatalyst, as well as the changes in the solvation shell structure, have been measured with ultrafast diffuse X-ray scattering and simulated with Born-Oppenheimer Molecular Dynamics. Both methods provide direct access to the solute-solvent pair distribution function, enabling the solvation dynamics around the catalytically active iridium sites to be robustly characterized. Our results provide evidence for the coordination of the iridium atoms by the acetonitrile solvent and demonstrate the viability of using diffuse X-ray scattering at free-electron laser sources for studying the dynamics of photocatalysis
Securing the Anthropocene? International Policy Experiments in Digital Hacktivism: A Case Study of Jakarta
This article analyses security discourses that are beginning to self-consciously take on board the shift towards the Anthropocene. Firstly, it sets out the developing episteme of the Anthropocene, highlighting the limits of instrumentalist cause-and-effect approaches to security, increasingly becoming displaced by discursive framings of securing as a process, generated through new forms of mediation and agency, capable of grasping inter-relations in a fluid context. This approach is the methodology of hacking: creatively composing and repurposing already existing forms of agency. It elaborates on hacking as a set of experimental practices and imaginaries of securing the Anthropocene, using as a case study the field of digital policy activism with the focus on community empowerment through social-technical assemblages being developed and applied in ‘the City of the Anthropocene’: Jakarta, Indonesia. The article concludes that policy interventions today cannot readily be grasped in modernist frameworks of ‘problem solving’ but should be seen more in terms of evolving and adaptive ‘life hacks’
Theoretical investigation of the electronic structure of Fe(II) complexes at spin-state transitions
The electronic structure relevant to low spin (LS)high spin (HS) transitions in Fe(II) coordination compounds with a FeN6 core are studied. The selected [Fe(tz)6]2+(1) (tz=1H-tetrazole), [Fe(bipy)3]2+(2) (bipy=2,2’-bipyridine) and [Fe(terpy)2]2+ (3) (terpy=2,2’:6’,2’’-terpyridine) complexes have been actively studied experimentally, and with their respective mono-, bi-, and tridentate ligands, they constitute a comprehensive set for theoretical case studies. The methods in this work include density functional theory (DFT), time-dependent DFT (TD-DFT) and multiconfigurational second order perturbation theory (CASPT2). We determine the structural parameters as well as the energy splitting of the LS-HS states (ΔEHL) applying the above methods, and comparing their performance. We also determine the potential energy curves representing the ground and low-energy excited singlet, triplet, and quintet d6 states along the mode(s) that connect the LS and HS states. The results indicate that while DFT is well suited for the prediction of structural parameters, an accurate multiconfigurational approach is essential for the quantitative determination of ΔEHL. In addition, a good qualitative agreement is found between the TD-DFT and CASPT2 potential energy curves. Although the TD-DFT results might differ in some respect (in our case, we found a discrepancy at the triplet states), our results suggest that this approach, with due care, is very promising as an alternative for the very expensive CASPT2 method. Finally, the two dimensional (2D) potential energy surfaces above the plane spanned by the two relevant configuration coordinates in [Fe(terpy)2]2+ were computed both at the DFT and CASPT2 levels. These 2D surfaces indicate that the singlet-triplet and triplet-quintet states are separated along different coordinates, i.e. different vibration modes. Our results confirm that in contrast to the case of complexes with mono- and bidentate ligands, the singlet-quintet transitions in [Fe(terpy)2]2+ cannot be described using a single configuration coordinate
Anisotropy enhanced X-ray scattering from solvated transition metal complexes
Time-resolved X-ray scattering patterns from photoexcited molecules in
solution are in many cases anisotropic at the ultrafast time scales accessible
at X-ray Free Electron Lasers (XFELs). This anisotropy arises from the
interaction of a linearly polarized UV-vis pump laser pulse with the sample,
which induces anisotropic structural changes that can be captured by
femtosecond X-ray pulses. In this work we describe a method for quantitative
analysis of the anisotropic scattering signal arising from an ensemble of
molecules and we demonstrate how its use can enhance the structural sensitivity
of the time-resolved X-ray scattering experiment. We apply this method on
time-resolved X-ray scattering patterns measured upon photoexcitation of a
solvated di-platinum complex at an XFEL and explore the key parameters
involved. We show that a combined analysis of the anisotropic and isotropic
difference scattering signals in this experiment allows a more precise
determination of the main photoinduced structural change in the solute, i.e.
the change in Pt-Pt bond length, and yields more information on the excitation
channels than the analysis of the isotropic scattering only. Finally, we
discuss how the anisotropic transient response of the solvent can enable the
determination of key experimental parameters such as the Instrument Response
Function.Comment: Accepted for publication in Journal of Synchrotron Radiatio
- …
