60 research outputs found

    The Melanoma Inhibitor of Apoptosis Protein: A Target for Spontaneous Cytotoxic T Cell Responses

    Get PDF
    The identification of tumor antigens which expression is essential for the survival of tumor cells is a new avenue to prevent antigen loss variants emerging due to immunoselection, particularly during immune therapy. The melanoma inhibitor of apoptosis protein, ML-IAP (also named livin) counteracts apoptosis induced by death receptors, hypooxgenic conditions, or chemotherapeutic agents. Thus, elevated expression of ML-IAP renders melanoma cells resistant to apoptotic stimuli and thereby potentially contributes to the oncogenic phenotype. Here, we demonstrate that T cells in a large proportion of melanoma patients infiltrating the tumor or circulating in the peripheral blood specifically recognize ML-IAP-derived peptides. Interestingly, the responses against the peptide epitope ML-IAP280–289 were not restricted to melanoma patients but present among peripheral blood T cells in a few healthy controls. In situ peptide/HLA-A2 multimer staining, however, confirmed the infiltration of ML-IAP-reactive cells into the tumor microenvironment. Moreover, ML-IAP-reactive T cells isolated by magnetic beads coated with peptide/HLA-A2 complexes were cytotoxic against HLA-matched melanoma cells. In conclusion, out data strongly indicate ML-IAP as a suitable target for immunologic intervention

    T-cell clonotypes in cancer

    Get PDF
    Cells of the immune system spontaneously recognize autologous tumor cells and T cells are believed to be the main effector cells for the immune surveillance of cancer. Recent advances in our understanding of basic and tumor immunology together with methodological developments implies that tumor specific T cells can now be studied functionally, phenotypically as well as molecularly. T cells recognize peptide antigens in the context of MHC molecules through the clonally distributed T-cell receptor (TCR), thus, the clonal distribution of the TCR offers the means to detect and track specific T cells based upon detection of the unique TCR. In this review, we present and discuss available data on TCR utilization of tumor specific T cells in murine models as well as spontaneous and treatment induced anti-tumor T-cell responses in humans

    HLA-A24 and survivin: possibilities in therapeutic vaccination against cancer

    Get PDF
    Recently, it was described that an HLA-A24 restricted peptide derived from the survivin splice variant survivin-2B can be recognized by CD8(+) cytotoxic T-cells. The identification of an HLA-A24 epitope is critical for survivin-based immunotherapy as HLA-24 is the most frequent HLA allele in Asia. Consequently, this survivin-2B epitope is already a target in a clinical study in patients with advanced or recurrent colorectal cancer expressing survivin. However, the splice variant survivin-2B has been described to be pro-apoptotic, and is only expressed at low levels in most malignant tissues. Furthermore, survivin-2B expression are significantly decreased in later tumor stages and inversely correlated with tumor differentiation and invasion. Consequently, survivin is a more general vaccination candidate than the splice variant survivin-2B. Here, we on the basis of spontaneous immune responses in HLA-A24+ cancer patients describes that a HLA-A24-restricted survivin epitopes does indeed exist. Consequently, this epitope is an attractive target for the ongoing survivin-based peptide immunotherapy against cancer

    Ancient genomes reveal social and genetic structure of Late Neolithic Switzerland

    Get PDF
    Genetic studies of Neolithic and Bronze Age skeletons from Europe have provided evidence for strong population genetic changes at the beginning and the end of the Neolithic period. To further understand the implications of these in Southern Central Europe, we analyze 96 ancient genomes from Switzerland, Southern Germany, and the Alsace region in France, covering the Middle/Late Neolithic to Early Bronze Age. Similar to previously described genetic changes in other parts of Europe from the early 3rd millennium BCE, we detect an arrival of ancestry related to Late Neolithic pastoralists from the Pontic-Caspian steppe in Switzerland as early as 2860-2460 calBCE. Our analyses suggest that this genetic turnover was a complex process lasting almost 1000 years and involved highly genetically structured populations in this region

    MicroRNAs in the pathogenesis, diagnosis, prognosis and targeted treatment of cutaneous T-cell lymphomas

    Get PDF
    Cutaneous T-cell lymphoma (CTCL) represents a heterogeneous group of potentially devastating primary skin malignancies. Despite decades of intense research efforts, the pathogenesis is still not fully understood. In the early stages, both clinical and histopathological diagnosis is often difficult due to the ability of CTCL to masquerade as benign skin inflammatory dermatoses. Due to a lack of reliable biomarkers, it is also difficult to predict which patients will respond to therapy or progress towards severe recalcitrant disease. In this review, we discuss recent discoveries concerning dysregulated microRNA (miR) expression and putative pathological roles of oncogenic and tumor suppressive miRs in CTCL. We also focus on the interplay between miRs, histone deacetylase inhibitors, and oncogenic signaling pathways in malignant T cells as well as the impact of miRs in shaping the inflammatory tumor microenvironment. We highlight the potential use of miRs as diagnostic and prognostic markers, as well as their potential as therapeutic targets. Finally, we propose that the combined use of miR-modulating compounds with epigenetic drugs may provide a novel avenue for boosting the clinical efficacy of existing anti-cancer therapies in CTCL

    <i>Staphylococcus aureus</i> enterotoxins induce FOXP3 in neoplastic T cells in Sézary syndrome

    Get PDF
    Sezary syndrome (SS) is a heterogeneous leukemic subtype of cutaneous T-cell lymphoma (CTCL) with generalized erythroderma, lymphadenopathy, and a poor prognosis. Advanced disease is invariably associated with severe immune dysregulation and the majority of patients die from infectious complications caused by microorganisms such as, Staphylococcus aureus, rather than from the lymphoma per se. Here, we examined if staphylococcal enterotoxins (SE) may shape the phenotype of malignant SS cells, including expression of the regulatory T-cell-associated marker FOXP3. Our studies with primary and cultured malignant cells show that SE induce expression of FOXP3 in malignant cells when exposed to nonmalignant cells. Mutations in the MHC class II binding domain of SE-A (SEA) largely block the effect indicating that the response relies at least in part on the MHC class II-mediated antigen presentation. Transwell experiments show that the effect is induced by soluble factors, partly blocked by anti-IL-2 antibody, and depends on STAT5 activation in malignant cells. Collectively, these findings show that SE stimulate nonmalignant cells to induce FOXP3 expression in malignant cells. Thus, differences in exposure to environmental factors, such as bacterial toxins may explain the heterogeneous FOXP3 expression in malignant cells in SS.Dermatology-oncolog

    Identification of a cyclin B1-derived CTL epitope eliciting spontaneous responses in both cancer patients and healthy donors

    Get PDF
    With the aim to identify cyclin B1-derived peptides with high affinity for HLA-A2, we used three in silico prediction algorithms to screen the protein sequence for possible HLA-A2 binders. One peptide scored highest in all three algorithms, and the high HLA-A2-binding affinity of this peptide was verified in an HLA stabilization assay. By stimulation with peptide-loaded dendritic cells a CTL clone was established, which was able to kill two breast cancer cell lines in an HLA-A2-dependent and peptide-specific manner, demonstrating presentation of the peptide on the surface of cancer cells. Furthermore, blood from cancer patients and healthy donors was screened for spontaneous T-cell reactivity against the peptide in IFN-γ ELISPOT assays. Patients with breast cancer, malignant melanoma, or renal cell carcinoma hosted powerful and high-frequency T-cell responses against the peptide. In addition, when blood from healthy donors was tested, similar responses were observed. Ultimately, serum from cancer patients and healthy donors was analyzed for anti-cyclin B1 antibodies. Humoral responses against cyclin B1 were frequently detected in both cancer patients and healthy donors. In conclusion, a high-affinity cyclin B1-derived HLA-A2-restricted CTL epitope was identified, which was presented on the cell surface of cancer cells, and elicited spontaneous T-cell responses in cancer patients and healthy donors

    The Immune System Strikes Back: Cellular Immune Responses against Indoleamine 2,3-dioxygenase

    Get PDF
    The enzyme indoleamine 2,3-dioxygenase (IDO) exerts an well established immunosuppressive function in cancer. IDO is expressed within the tumor itself as well as in antigen-presenting cells in tumor-draining lymph nodes, where it promotes the establishment of peripheral immune tolerance to tumor antigens. In the present study, we tested the notion whether IDO itself may be subject to immune responses.The presence of naturally occurring IDO-specific CD8 T cells in cancer patients was determined by MHC/peptide stainings as well as ELISPOT. Antigen specific cytotoxic T lymphocytes (CTL) from the peripheral blood of cancer patients were cloned and expanded. The functional capacity of the established CTL clones was examined by chrome release assays. The study unveiled spontaneous cytotoxic T-cell reactivity against IDO in peripheral blood as well as in the tumor microenvironment of different cancer patients. We demonstrate that these IDO reactive T cells are indeed peptide specific, cytotoxic effector cells. Hence, IDO reactive T cells are able to recognize and kill tumor cells including directly isolated AML blasts as well as IDO-expressing dendritic cells, i.e. one of the major immune suppressive cell populations.IDO may serve as an important and widely applicable target for anti-cancer immunotherapeutic strategies. Furthermore, as emerging evidence suggests that IDO constitutes a significant counter-regulatory mechanism induced by pro-inflammatory signals, IDO-based immunotherapy holds the promise to boost anti-cancer immunotherapy in general

    Ochratoxin A in Ruminants–A Review on Its Degradation by Gut Microbes and Effects on Animals

    Get PDF
    Ruminants are much less sensitive to ochratoxin A (OTA) than non-ruminants. The ruminal microbes, with protozoa being a central group, degrade the mycotoxin extensively, with disappearance half lives of 0.6–3.8 h. However, in some studies OTA was detected systemically when using sensitive analytical methods, probably due to some rumen bypass at proportions of estimated 2–6.5% of dosage (maximum 10%). High concentrate proportions and high feeding levels are dietary factors promoting the likeliness of systemic occurrence due to factors like shifts in microbial population and higher contamination potential. Among risk scenarios for ruminants, chronic intoxication represents the most relevant
    corecore