10 research outputs found

    Characterization of the interaction between the HIV-1 Gag structural polyprotein and the cellular ribosomal protein L7 and its implication in viral nucleic acid remodeling

    Get PDF
    Background: In HIV-1 infected cells, the integrated viral DNA is transcribed by the host cell machinery to generate the full length HIV-1 RNA (FL RNA) that serves as mRNA encoding for the Gag and GagPol precursors. Virion formation is orchestrated by Gag, and the current view is that a specific interaction between newly made Gag molecules and FL RNA initiates the process. This in turn would cause FL RNA dimerization by the NC domain of Gag (GagNC). However the RNA chaperoning activity of unprocessed Gag is low as compared to the mature NC protein. This prompted us to search for GagNC co-factors. Results: Here we report that RPL7, a major ribosomal protein involved in translation regulation, is a partner of Gag via its interaction with the NC domain. This interaction is mediated by the NC zinc fingers and the N- and C-termini of RPL7, respectively, but seems independent of RNA binding, Gag oligomerization and its interaction with the plasma membrane. Interestingly, RPL7 is shown for the first time to exhibit a potent DNA/RNA chaperone activity higher than that of Gag. In addition, Gag and RPL7 can function in concert to drive rapid nucleic acid hybridization. Conclusions: Our results show that GagNC interacts with the ribosomal protein RPL7 endowed with nucleic acid chaperone activity, favoring the notion that RPL7 could be a Gag helper chaperoning factor possibly contributing to the start of Gag assembly.Instituto de Estudios InmunolĂłgicos y FisiopatolĂłgico

    HIV-1 Vpr mediates the depletion of the cellular repressor CTIP2 to counteract viral gene silencing

    Get PDF
    Mammals have evolved many antiviral factors impacting different steps of the viral life cycle. Associated with chromatin-modifying enzymes, the cellular cofactor CTIP2 contributes to HIV-1 gene silencing in latently infected reservoirs that constitute the major block toward an HIV cure. We report, for the first time, that the virus has developed a strategy to overcome this major transcriptional block. Productive HIV-1 infection results in a Vpr-mediated depletion of CTIP2 in microglial cells and CD4+ T cells, two of the major viral reservoirs. Associated to the Cul4A-DDB1-DCAF1 ubiquitin ligase complex, Vpr promotes CTIP2 degradation via the proteasome pathway in the nuclei of target cells and notably at the latent HIV-1 promoter. Importantly, Vpr targets CTIP2 associated with heterochromatin-promoting enzymes dedicated to HIV-1 gene silencing. Thereby, Vpr reactivates HIV-1 expression in a microglial model of HIV-1 latency. Altogether our results suggest that HIV-1 Vpr mediates the depletion of the cellular repressor CTIP2 to counteract viral gene silencing.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Characterization of the interaction between Gag(NCp7) and the cellular protein RPL7 : molecular and functional aspects

    No full text
    Mon travail de thèse a été basé sur la caractérisation de l'interaction entre Gag (NCp7) et la RPL7 en milieu cellulaire et in vitro ainsi sur son rôle fonctionnel dans le cycle viral. La polyprotéine Gag du VIH-1 orchestre l’assemblage de la particule virale, en favorisant l’encapsidation de l'ARN génomique viral par son domaine NCp7, et en recrutant des protéines virales et cellulaires. Notre hypothèse est de savoir, si Gag peut contrôler sa propre synthèse et par conséquence la transition entre traduction et encapsidation de l'ARN génomique dans les particules naissantes. Nous avons étudié les protéines cellulaires, identifiées par double hybride, qui peuvent interagir avec Gag et NCp7. La RPL7 humaine est l'une de ces protéines de la grande sous-unité 60S ribosomique. Elle se compose de 248 acides aminés et a la capacité d'inhiber la traduction. Cette fonction peut expliquer le «switch» entre la traduction et de l'encapsidation de l'ARN génomique. Les résultats ont montré que Gag était capable d'interagir avec d'autres protéines que la RPL7 de la sous-unité 60S, par son domaine NCp7.Thesis work was based on characterization of interaction between Gag (NCp7) and RPL7 in cellular environment and in vitro and its functional role in the viral cycle. Gag polyprotein of HIV-1 orchestrates assembly of the virus particle, especially by driving packaging of the viral genomic RNA through its NCp7 domain, and by the recruitment of viral and cellular protein partners. Our hypothesis was to know, whether Gag can control its own synthesis and consequently the transition between translation and packaging of the genomic RNA into nascent particles. We investigated cellular proteins, identified by a two-hybrid assay, which can interact with Gag and NCp7. Human RPL7 is one such protein from large ribosomal subunit 60S. It consists of 248 amino acids and has the ability to inhibit translation. This function can explain the 'switch' between translation and packaging of the genomic RNA. Results showed that Gag was capable of interacting with RPL7 and other proteins from 60S subunit, through its NCp7 domain

    Caractérisation de l'interaction entre Gag(NCp7) et la protéine cellulaire RPL7 : aspects moléculaire et fonctionnel

    No full text
    Thesis work was based on characterization of interaction between Gag (NCp7) and RPL7 in cellular environment and in vitro and its functional role in the viral cycle. Gag polyprotein of HIV-1 orchestrates assembly of the virus particle, especially by driving packaging of the viral genomic RNA through its NCp7 domain, and by the recruitment of viral and cellular protein partners. Our hypothesis was to know, whether Gag can control its own synthesis and consequently the transition between translation and packaging of the genomic RNA into nascent particles. We investigated cellular proteins, identified by a two-hybrid assay, which can interact with Gag and NCp7. Human RPL7 is one such protein from large ribosomal subunit 60S. It consists of 248 amino acids and has the ability to inhibit translation. This function can explain the 'switch' between translation and packaging of the genomic RNA. Results showed that Gag was capable of interacting with RPL7 and other proteins from 60S subunit, through its NCp7 domain.Mon travail de thèse a été basé sur la caractérisation de l'interaction entre Gag (NCp7) et la RPL7 en milieu cellulaire et in vitro ainsi sur son rôle fonctionnel dans le cycle viral. La polyprotéine Gag du VIH-1 orchestre l’assemblage de la particule virale, en favorisant l’encapsidation de l'ARN génomique viral par son domaine NCp7, et en recrutant des protéines virales et cellulaires. Notre hypothèse est de savoir, si Gag peut contrôler sa propre synthèse et par conséquence la transition entre traduction et encapsidation de l'ARN génomique dans les particules naissantes. Nous avons étudié les protéines cellulaires, identifiées par double hybride, qui peuvent interagir avec Gag et NCp7. La RPL7 humaine est l'une de ces protéines de la grande sous-unité 60S ribosomique. Elle se compose de 248 acides aminés et a la capacité d'inhiber la traduction. Cette fonction peut expliquer le «switch» entre la traduction et de l'encapsidation de l'ARN génomique. Les résultats ont montré que Gag était capable d'interagir avec d'autres protéines que la RPL7 de la sous-unité 60S, par son domaine NCp7

    Targeting the brain reservoirs: towards an HIV cure

    No full text
    One of the top research priorities of the international AIDS society by the action Towards an HIV Cure is the purge or the decrease of the pool of all latently infected cells. This strategy is based on reactivation of latently reservoirs (the shock) followed by an intensifying Combination Antiretroviral Therapy (cART) to kill them (the kill). The Central Nervous System (CNS) has potential latently infected cells i.e. perivascular macrophages, microglial cells and astrocytes which will need to be eliminate. However the CNS has several characteristics that may preclude the achievement of a cure. In this review we discuss several limitations to the eradication of brain reservoirs and how we could circumvent these limitations by making it efforts in 4 directions: (i) designing efficient Latency-Reversal Agents for CNS-cell types (ii) improving cART by targeting HIV transcription (iii) improving delivery of HIV drugs in the CNS and in the CNS-cell types (iv) developing therapeutic immunization. As a prerequisite to these efforts we also believe that a better comprehension of molecular mechanisms involved in establishment and persistence of HIV latency in brain reservoirs are essential to design new molecules for strategies aiming to achieve a cure for instance the shock and kill strategy

    Targeting the Brain Reservoirs: Toward an HIV Cure

    Get PDF
    One of the top research priorities of the international AIDS society by the action “Towards an HIV Cure” is the purge or the decrease of the pool of all latently infected cells. This strategy is based on reactivation of latently reservoirs (the shock) followed by an intensifying combination antiretroviral therapy (cART) to kill them (the kill). The central nervous system (CNS) has potential latently infected cells, i.e., perivascular macrophages, microglial cells, and astrocytes that will need to be eliminated. However, the CNS has several characteristics that may preclude the achievement of a cure. In this review, we discuss several limitations to the eradication of brain reservoirs and how we could circumvent these limitations by making it efforts in four directions: (i) designing efficient latency-reversal agents for CNS-cell types, (ii) improving cART by targeting HIV transcription, (iii) improving delivery of HIV drugs in the CNS and in the CNS-cell types, and (iv) developing therapeutic immunization. As a prerequisite to these efforts, we also believe that a better comprehension of molecular mechanisms involved in establishment and persistence of HIV latency in brain reservoirs are essential to design new molecules for strategies aiming to achieve a cure for instance the “shock and kill” strategy

    Characterization of the interaction between the HIV-1 Gag structural polyprotein and the cellular ribosomal protein L7 and its implication in viral nucleic acid remodeling

    Get PDF
    Background: In HIV-1 infected cells, the integrated viral DNA is transcribed by the host cell machinery to generate the full length HIV-1 RNA (FL RNA) that serves as mRNA encoding for the Gag and GagPol precursors. Virion formation is orchestrated by Gag, and the current view is that a specific interaction between newly made Gag molecules and FL RNA initiates the process. This in turn would cause FL RNA dimerization by the NC domain of Gag (GagNC). However the RNA chaperoning activity of unprocessed Gag is low as compared to the mature NC protein. This prompted us to search for GagNC co-factors. Results: Here we report that RPL7, a major ribosomal protein involved in translation regulation, is a partner of Gag via its interaction with the NC domain. This interaction is mediated by the NC zinc fingers and the N- and C-termini of RPL7, respectively, but seems independent of RNA binding, Gag oligomerization and its interaction with the plasma membrane. Interestingly, RPL7 is shown for the first time to exhibit a potent DNA/RNA chaperone activity higher than that of Gag. In addition, Gag and RPL7 can function in concert to drive rapid nucleic acid hybridization. Conclusions: Our results show that GagNC interacts with the ribosomal protein RPL7 endowed with nucleic acid chaperone activity, favoring the notion that RPL7 could be a Gag helper chaperoning factor possibly contributing to the start of Gag assembly.Fil: El Mekdad, Hala. Centre National de la Recherche Scientifique; Francia. Université de Strasbourg; FranciaFil: Boutant, Emmanuel. Centre National de la Recherche Scientifique; Francia. Université de Strasbourg; FranciaFil: Karnib, Hassan. Université de Strasbourg; Francia. Centre National de la Recherche Scientifique; FranciaFil: Biedma, Marina Elizabeth. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Estudios Inmunológicos y Fisiopatológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Estudios Inmunológicos y Fisiopatológicos; Argentina. Université de Strasbourg; Francia. Inserm; FranciaFil: Sharma, Kamal Kant. Centre National de la Recherche Scientifique; Francia. Université de Strasbourg; FranciaFil: Malytska, Iuliia. Université de Strasbourg; Francia. Centre National de la Recherche Scientifique; FranciaFil: Laumond, Géraldine. Université de Strasbourg; Francia. Inserm; FranciaFil: Roy, Marion. Université de Strasbourg; Francia. Centre National de la Recherche Scientifique; FranciaFil: Réal, Eléonore. Centre National de la Recherche Scientifique; Francia. Université de Strasbourg; FranciaFil: Paillart, Jean Christophe. Centre National de la Recherche Scientifique; Francia. Université de Strasbourg; FranciaFil: Moog, Christiane. Université de Strasbourg; Francia. Inserm; FranciaFil: Darlix, Jean Luc. Université de Strasbourg; Francia. Centre National de la Recherche Scientifique; FranciaFil: Mély, Yves. Université de Strasbourg; Francia. Centre National de la Recherche Scientifique; FranciaFil: de Rocquigny, Hugues. Université de Strasbourg; Francia. Centre National de la Recherche Scientifique; Franci
    corecore