102 research outputs found

    Variational approach to the Caldeira-Leggett model

    Full text link
    We apply the displaced-oscillator variational ansatz to the Caldeira-Leggett model for a quantum particle in a one-dimensional box described by a tight-binding chain. We focus on the case of an Ohmic environment and study the phase diagram for different chain lengths. At zero temperature there is a phase transition to a localized phase when the number of sites is even. At finite temperature, a transition from a coherent to an incoherent regime is predicted for all the chain lengths considered. Finally, the results are compared to those obtained with numerical techniques.Comment: 7 pages, 4 figure

    Saline-Resistant Paddy Macronutrient Content Response to The Saline Source Distance

    Get PDF
    The impact of salinity on paddy production in Indonesia was pronounced with an average decline of 6.83% (2015-2019). Salinity interferes with macronutrients' absorption into plants, causing stunted growth (salinity contributed to a 42% decrease in paddy production). One solution to solve the salinity problem in paddy is to use saline varieties. There were very few studies on macronutrient content analysis in resistant varieties response to the salinity source's distance.  This research conducted in Jabon Sidoarjo, Indonesia, aims to see the macronutrient response and plant growth to the saline source's distance. This research was conducted in Jabon District, Sidoarjo Regency, using two transects with a length of 2 km and 3.4 km, respectively. The distance between the research location and the salinity source was 10.65 km.  The survey used a free grid to adjust paddy fields' location and the presence of resistant varieties. The results showed that the closer to the salinity source, the salinity indicators consisting of Electrical Conductivity, Sodium Adsorption Ratio, Exchangeable Sodium Percentage, and pH H2O would increase. The increase in salinity then affects the decrease in macronutrients (Nitrogen, Phosphor, and Kalium) in plants. However, tillers and leaves (length and number) were unaffected by high salinity levels in the soil

    Three-dimensional printing as a cutting-edge, versatile and personalizable vascular stent manufacturing procedure:Toward tailor-made medical devices

    Get PDF
    Vascular stents (VS) have revolutionized the treatment of cardiovascular diseases, as evidenced by the fact that the implantation of VS in coronary artery disease (CAD) patients has become a routine, easily approachable surgical intervention for the treatment of stenosed blood vessels. Despite the evolution of VS throughout the years, more efficient approaches are still required to address the medical and scientific challenges, especially when it comes to peripheral artery disease (PAD). In this regard, three-dimensional (3D) printing is envisaged as a promising alternative to upgrade VS by optimizing the shape, dimensions and stent backbone (crucial for optimal mechanical properties), making them customizable for each patient and each stenosed lesion. Moreover, the combination of 3D printing with other methods could also upgrade the final device. This review focuses on the most recent studies using 3D printing techniques to produce VS, both by itself and in combination with other techniques. The final aim is to provide an overview of the possibilities and limitations of 3D printing in the manufacturing of VS. Furthermore, the current situation of CAD and PAD pathologies is also addressed, thus highlighting the main weaknesses of the already existing VS and identifying research gaps, possible market niches and future directions.This work was funded by the Basque Country Government/Eusko Jaurlaritza (Department of Education, University and Research, Consolidated Groups IT448- 22) . Sandra Ruiz-Alonso and Fouad Al -Hakim thank the Basque Country Government for the granted fellowships PRE_2021_2_0153 and PRE_2021_2_0181, respectively. Denis Scaini gratefully acknowledges support from IKERBASQUE, the Basque Foundation of Science

    DICER1-associated central nervous system sarcoma: A comprehensive clinical and genomic characterization of case series of young adult patients

    Get PDF
    Las alteraciones de DICER1 están asociadas con tumores intracraneales en la población pediátrica, incluidos el pineoblastoma, el blastoma hipofisario y el recientemente descrito " sarcoma primario del SNC asociado a DICER1 " (DCS). DCS es un tumor extremadamente agresivo con una firma de metilación distinta y una alta frecuencia de mutaciones concurrentes. Sin embargo, se sabe poco sobre su enfoque de tratamiento y los cambios genómicos que ocurren después de la exposición a la quimiorradioterapia.DICER1 alterations are associated with intracranial tumors in the pediatric population, including pineoblastoma, pituitary blastoma and the recently described "DICER1-associated primary CNS sarcoma" (DCS). DCS is an extremely aggressive tumor with a distinct methylation signature and a high frequency of concurrent mutations. However, little is known about its treatment approach and the genomic changes that occur after exposure to chemoradiotherapy

    Normal Pressure Hydrocephalus: Revisiting the Hydrodynamics of the Brain

    Get PDF
    Normal pressure hydrocephalus syndrome is the most common form of hydrocephalus in the elderly and produces a dementia which can be reversible surgically. It is characterized by ventriculomegaly and the classic triad of symmetric gait disturbance, cognitive decline and urinary incontinence, also known as Hakim’s triad. To date, the exact etiology of the disease has not been elucidated and the only effective treatment is a cerebrospinal fluid shunting procedure which can be a ventriculoatrial, ventriculoperitoneal or lumboperitoneal shunt. The most important problem is the high rate of underdiagnosis or misdiagnosis due to similarities in symptoms with other neurodegenerative disorders, and in some cases, coexistence. Hence, increasing awareness amongst the community and medical professionals in order to increase clinical suspicion, timely diagnosis and treatment are paramount. The best way to achieve this is by having a structured protocol with patient-centered tests that evaluates the entire myriad of alterations a clinician might encounter whenever treating patients with this disorder. Recent advances in imaging technology as well as cerebrospinal fluid biomarkers have given interesting insight into the pathophysiology of the disease and will certainly contribute greatly in diagnostic advancements. We finally present an institutional protocol which has been accredited by international peers with promising results in diagnostic and outcome rates

    Partitioned Paxos via the Network Data Plane

    Get PDF
    Consensus protocols are the foundation for building fault-tolerant, distributed systems, and services. They are also widely acknowledged as performance bottlenecks. Several recent systems have proposed accelerating these protocols using the network data plane. But, while network-accelerated consensus shows great promise, current systems suffer from an important limitation: they assume that the network hardware also accelerates the application itself. Consequently, they provide a specialized replicated service, rather than providing a general-purpose high-performance consensus that fits any off-the-shelf application. To address this problem, this paper proposes Partitioned Paxos, a novel approach to network-accelerated consensus. The key insight behind Partitioned Paxos is to separate the two aspects of Paxos, agreement, and execution, and optimize them separately. First, Partitioned Paxos uses the network forwarding plane to accelerate agreement. Then, it uses state partitioning and parallelization to accelerate execution at the replicas. Our experiments show that using this combination of data plane acceleration and parallelization, Partitioned Paxos is able to provide at least x3 latency improvement and x11 throughput improvement for a replicated instance of a RocksDB key-value store

    Synthesis and hyperpolarisation of eNOS substrates for quantification of NO production by 1H NMR spectroscopy

    Get PDF
    Hyperpolarization enhances the intensity of the NMR signals of a molecule, whose in vivo metabolic fate can be monitored by MRI with higher sensitivity. SABRE is a hyperpolarization technique that could potentially be used to image nitric oxide (NO) production in vivo. This would be very important, because NO dysregulation is involved in several pathologies, including cardiovascular ones. The nitric oxide synthase (NOS) pathway leads to NO production via conversion of l-arginine into l-citrulline. NO is a free radical gas with a short half-life in vivo (≈5s), therefore direct NO quantification is challenging. An indirect method - based on quantifying conversion of an l-Arg- to l-Cit-derivative by 1H NMR spectroscopy - is herein proposed. A small library of pyridyl containing l-Arg derivatives was designed and synthesised. In vitro tests showed that compounds 4a-j and 11a-c were better or equivalent substrates for the eNOS enzyme (NO2 - production=19-46μM) than native l-Arg (NO2 - production=25μM). Enzymatic conversion of l-Arg to l-Cit derivatives could be monitored by 1H NMR. The maximum hyperpolarization achieved by SABRE reached 870-fold NMR signal enhancement, which opens up exciting future perspectives of using these molecules as hyperpolarized MRI tracers in vivo

    Genotyping low-grade gliomas among hispanics

    Get PDF
    Q2164-172Background. Low-grade gliomas (LGGs) are classified by the World Health Organization as astrocytoma (DA), oligodendroglioma (OD), and mixed oligoastrocytoma (OA). TP53 mutation and 1p19q codeletion are the most-commonly documented molecular abnormalities. Isocitrate dehydrogenase (IDH) 1/2 mutations are frequent in LGGs; however, IDH-negative gliomas can also occur. Recent research suggests that ATRX plays a significant role in gliomagenesis. Methods. We investigated p53 and Olig2 protein expression, and MGMT promoter methylation, 1p19q codeletion, IDH, and ATRX status in 63 Colombian patients with LGG. The overall survival (OS) rate was estimated and compared according to genotype. Results. The most common histology was DA, followed by OD and OA. IDH1/2 mutations were found in 57.1% and MGMT+ (positive status of MGMT promoter methylation methyl-guanyl-methyl-transferase gene) in 65.1% of patients, while overexpression of p53 and Olig2 was present in 30.2% and 44.4%, respectively, and 1p19q codeletion in 34.9% of the patients. Overexpression of ATRX was analyzed in 25 patients, 16% tested positive and were also mutations in isocitrate dehydrogenase and negative 1p19q-codelition. The median follow-up was 15.8 months (95% CI, 7.6–42.0) and OS was 39.2 months (95% CI, 1.3–114). OS was positively and significantly affected by MGMT+, 1p19q codeletion, surgical intervention extent, and number of lobes involved. Multivariate analysis confirmed that MGMT methylation status and 1p19q codeletion affected OS. Conclusions. This is the first study evaluating the molecular profile of Hispanic LGG patients. Findings confirmed the prognostic relevance of MGMT methylation and 1p19q codeletion, but do not support IDH1/2 mutation as a relevant marker. The latter may be explained by sample size and selection bias. ATRX alterations were limited to patients with DA and were mutations in isocitrate dehydrogenase and negative 1p19q-codelition
    corecore