2,141 research outputs found

    A multimodal deep learning architecture for smoking detection with a small data approach

    Full text link
    Introduction: Covert tobacco advertisements often raise regulatory measures. This paper presents that artificial intelligence, particularly deep learning, has great potential for detecting hidden advertising and allows unbiased, reproducible, and fair quantification of tobacco-related media content. Methods: We propose an integrated text and image processing model based on deep learning, generative methods, and human reinforcement, which can detect smoking cases in both textual and visual formats, even with little available training data. Results: Our model can achieve 74\% accuracy for images and 98\% for text. Furthermore, our system integrates the possibility of expert intervention in the form of human reinforcement. Conclusions: Using the pre-trained multimodal, image, and text processing models available through deep learning makes it possible to detect smoking in different media even with few training data

    Microfluidic Platforms for Evaluation of Nanobiomaterials: A Review

    Get PDF
    Biomaterials, especially those based on nanomaterials, have emerged as critical tools in biomedical applications. The applications encompass a wide range such as implantable devices, tissue regeneration, drug delivery, diagnostic systems, and molecular printing. The type of materials used also covers a wide range: metals (permanent and degradable), polymers (permanent and degradable), carbon nanotubes, and lipid nanoparticles. This paper explores the use of microfluidic platforms as a high-throughput research tool for the evaluation of nanobiomaterials. Typical screening of such materials involves cell/tissue cultures to determine attributes such as cell adhesion, proliferation, differentiation, as well as biocompatibility. In addition to this, other areas such as drug delivery and toxicity can also be evaluated via microfluidics. Traditional approach for screening of such materials is very time-consuming, and a lot of animals should be sacrificed since it involves one material and a single composition or concentration for a single test. The microfluidics approach has the advantage of using multiple types of drugs and their concentration gradients to simultaneously study the effect on the nanobiomaterial and its interaction with cell/tissue. In addition to this, microfluidics provides a unique environment to study the effect of cell-to-extracellular interaction and cell-to-cell communication in the presence of the nanobiomaterials

    Carbon nanotubes quench singlet oxygen generated by photosynthetic reaction centers

    Get PDF
    Photosensitizers may convert molecular oxygen into reactive oxygen species (ROS) including, e.g., singlet oxygen (1O2), superoxide anion (O2-‱), and hydroxyl radicals (‱OH), chemicals with extremely high cyto- and potential genotoxicity. Photodynamic ROS reactions are determinative in medical photodynamic therapy (cancer treatment with externally added photosensitizers) and in reactions damaging the photosynthetic apparatus of plants (via internal pigments). The primary events of photosynthesis take place in the chlorophyll containing reaction center protein complex (RC), where the energy of light is converted into chemical potential. 1O2 is formed by both bacterial bacteriochlorophylls and plant RC triplet chlorophylls in high light and if the quenching of 1O2 is impaired. In plant physiology, reducing the formation of the ROS and thus lessening photooxidative membrane damage (including the RC protein) and increasing the efficiency of the photochemical energy conversion is of special interest. Carbon nanotubes, in artificial systems, are also known to react with singlet oxygen. To investigate the possibility of 1O2 quenching by carbon nanotubes in a biological system, we studied the effect of carbon nanotubes on 1O2 photogenerated by photosynthetic RCs purified from purple bacteria. 1,3-Diphenylisobenzofuran (DPBF), a dye responding to oxidation by 1O2 with absorption decrease at 420nm was used to measure 1O2 concentrations. 1O2 was produced either from a photosensitizer (methylene blue) or from triplet photosynthetic RCs and the antioxidant capacity of carbon nanotubes was assessed. Less 1O2 was detected by DPBF in the presence of carbon nanotubes, suggesting that these are potential quenchers of this ROS. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    DLQI-R scoring improves the discriminatory power of theDermatology Life Quality Index in patients with psoriasis,pemphigus and morphea

    Get PDF
    Background The Dermatology Life Quality Index (DLQI) rates ‘not relevant’responses (NRRs) as the item on the questionnaire having no impact on thepatients’ lives at all. The DLQI-Relevant (DLQI-R) is a recently developed scoringthat adjusts the total score of the questionnaire for the number of NRRs indicatedby a patient.Objectives To compare the discriminatory power of the original and DLQI-R scor-ing approaches in terms of absolute and relative informativity.Methods Cross-sectional data from 637 patients with morphea, pemphigus andpsoriasis were used for the analyses. To assess absolute and relative informativity,Shannon’s index and Shannon’s evenness index were calculated for the 10 itemson the questionnaire and for DLQI and DLQI-R total scores.Results Mean DLQI and DLQI-R scores of patients were 613 vs. 691. In the su b-set of patients wit h NRRs (n = 261, 41%), absolute informativity was higherwith the DLQI-R scoring for all eight items with NRR options in all three condi-tions. The DLQI-R exhibited a better relative informativity in 8, 8 and 6 items inpemphigus, morphea and psoriasis, respectively. The DLQI-R led to an improve-ment in average item-level informativity in all DLQI score bands up to 20 points.Regarding total scores, the DLQI-R produced both a higher absolute and relativeinformativity in all three conditions.Conclusions In patients with morphea, pemphigus and psoriasis, DLQI-R scoringimproves the discriminatory power of the questionnaire by beneïŹting from theadditional informa tion in NRRs. DLQI-R scoring may be us eful both in clinicalpractice and research. A scoring chart has been developed to aid physicians withscoring

    Coherent diffraction of single Rice Dwarf virus particles using hard X-rays at the Linac Coherent Light Source

    Get PDF
    Single particle diffractive imaging data from Rice Dwarf Virus (RDV) were recorded using the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). RDV was chosen as it is a wellcharacterized model system, useful for proof-of-principle experiments, system optimization and algorithm development. RDV, an icosahedral virus of about 70 nm in diameter, was aerosolized and injected into the approximately 0.1 mu m diameter focused hard X-ray beam at the CXI instrument of LCLS. Diffraction patterns from RDV with signal to 5.9 angstrom ngstrom were recorded. The diffraction data are available through the Coherent X-ray Imaging Data Bank (CXIDB) as a resource for algorithm development, the contents of which are described here.11Ysciescopu

    Neuroinflammatory processes are augmented in mice overexpressing human heat-shock protein B1 following ethanol-induced brain injury

    Get PDF
    Background: Heat-shock protein B1 (HSPB1) is among the most well-known and versatile member of the evolutionarily conserved family of small heat-shock proteins. It has been implicated to serve a neuroprotective role against various neurological disorders via its modulatory activity on inflammation, yet its exact role in neuroinflammation is poorly understood. In order to shed light on the exact mechanism of inflammation modulation by HSPB1, we investigated the effect of HSPB1 on neuroinflammatory processes in an in vivo and in vitro model of acute brain injury. Methods: In this study, we used a transgenic mouse strain overexpressing the human HSPB1 protein. In the in vivo experiments, 7-day-old transgenic and wild-type mice were treated with ethanol. Apoptotic cells were detected using TUNEL assay. The mRNA and protein levels of cytokines and glial cell markers were examined using RT-PCR and immunohistochemistry in the brain. We also established primary neuronal, astrocyte, and microglial cultures which were subjected to cytokine and ethanol treatments. TNF alpha and hHSPB1 levels were measured from the supernates by ELISA, and intracellular hHSPB1 expression was analyzed using fluorescent immunohistochemistry. Results: Following ethanol treatment, the brains of hHSPB1-overexpressing mice showed a significantly higher mRNA level of pro-inflammatory cytokines (Tnf, Il1b), microglia (Cd68, Arg1), and astrocyte (Gfap) markers compared to wild-type brains. Microglial activation, and 1 week later, reactive astrogliosis was higher in certain brain areas of ethanol-treated transgenic mice compared to those of wild-types. Despite the remarkably high expression of pro-apoptotic Tnf, hHSPB1-overexpressing mice did not exhibit higher level of apoptosis. Our data suggest that intracellular hHSPB1, showing the highest level in primary astrocytes, was responsible for the inflammation-regulating effects. Microglia cells were the main source of TNF alpha in our model. Microglia isolated from hHSPB1-overexpressing mice showed a significantly higher release of TNF alpha compared to wild-type cells under inflammatory conditions. Conclusions; Our work provides novel in vivo evidence that hHSPB1 overexpression has a regulating effect on acute neuroinflammation by intensifying the expression of pro-inflammatory cytokines and enhancing glial cell activation, but not increasing neuronal apoptosis. These results suggest that hHSPB1 may play a complex role in the modulation of the ethanol-induced neuroinflammatory response.Peer reviewe
    • 

    corecore