43 research outputs found

    The prevalence of childhood asthma in China: a systematic review

    Get PDF
    Extent: 10p.Background: It is well known that the prevalence of asthma has been reported to increase in many places around the world during the last decades. Therefore, the aim of this study was to identify and review studies of asthma prevalence among children in China and address time trends and regional variation in asthma. Methods: A systematic literature search was performed using PubMed and China National Knowledge Infrastructure (CNKI) databases. Selected articles had to describe an original study that showed the prevalence of asthma among children aged 0−14 years. Results: A total of 74 articles met the inclusion criteria. The lifetime prevalence of asthma varied between 1.1% in Lhasa (Tibet) and 11.0% in Hong Kong in studies following the International Study of Asthma and Allergies in Childhood (ISAAC) protocol. The prevalence was 3% or lower in most articles following Chinese diagnostic criteria. One article reported the results from two national surveys and showed that the current average prevalence of asthma for the total study population had increased from 1990 to 2000 (0.9% to 1.5%). The lowest current prevalence was found in Lhasa (0.1% in 1990, 0.5% in 2000). Conclusions: The prevalence of childhood asthma was generally low, both in studies following the ISAAC and Chinese diagnostic criteria. Assessment of time trends and regional variations in asthma prevalence was difficult due to insufficient data, variation in diagnostic criteria, difference in data collection methods, and uncertainty in prevalence measures. However, the findings from one large study of children from 27 different cities support an increase in current prevalence of childhood asthma from 1990 to 2000. The lowest current prevalence of childhood asthma was found in Tibet.Yangzong Yangzong, Zumin Shi, Per Nafstad, Lise Lund Håheim, Ouzhu Luobu and Espen Bjertnes

    Leisure time physical activity in middle age predicts the metabolic syndrome in old age: results of a 28-year follow-up of men in the Oslo study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Data are scarce on the long term relationship between leisure time physical activity, smoking and development of metabolic syndrome and diabetes. We wanted to investigate the relationship between leisure time physical activity and smoking measured in middle age and the occurrence of the metabolic syndrome and diabetes in men that participated in two cardiovascular screenings of the Oslo Study 28 years apart.</p> <p>Methods</p> <p>Men residing in Oslo and born in 1923–32 (n = 16 209) were screened for cardiovascular diseases and risk factors in 1972/3. Of the original cohort, those who also lived in same area in 2000 were invited to a repeat screening examination, attended by 6 410 men. The metabolic syndrome was defined according to a modification of the National Cholesterol Education Program criteria. Leisure time physical activity, smoking, educational attendance and the presence of diabetes were self-reported.</p> <p>Results</p> <p>Leisure time physical activity decreased between the first and second screening and tracked only moderately between the two time points (Spearman's ρ = 0.25). Leisure time physical activity adjusted for age and educational attendance was a significant predictor of both the metabolic syndrome and diabetes in 2000 (odds ratio for moderately vigorous versus sedentary/light activity was 0.65 [95% CI, 0.54–0.80] for the metabolic syndrome and 0.68 [0.52–0.91] for diabetes) (test for trend P < 0.05). However, when adjusted for more factors measured in 1972/3 including glucose, triglycerides, body mass index, treated hypertension and systolic blood pressure these associations were markedly attenuated. Smoking was associated with the metabolic syndrome but not with diabetes in 2000.</p> <p>Conclusion</p> <p>Physical activity during leisure recorded in middle age prior to the current waves of obesity and diabetes had an independent predictive association with the presence of the metabolic syndrome but not significantly so with diabetes 28 years later in life, when the subjects were elderly.</p

    Sex-specific relevance of diabetes to occlusive vascular and other mortality: a collaborative meta-analysis of individual data from 980793 adults from 68 prospective studies

    Get PDF
    Background Several studies have shown that diabetes confers a higher relative risk of vascular mortality among women than among men, but whether this increased relative risk in women exists across age groups and within defined levels of other risk factors is uncertain. We aimed to determine whether differences in established risk factors, such as blood pressure, BMI, smoking, and cholesterol, explain the higher relative risks of vascular mortality among women than among men. Methods In our meta-analysis, we obtained individual participant-level data from studies included in the Prospective Studies Collaboration and the Asia Pacific Cohort Studies Collaboration that had obtained baseline information on age, sex, diabetes, total cholesterol, blood pressure, tobacco use, height, and weight. Data on causes of death were obtained from medical death certificates. We used Cox regression models to assess the relevance of diabetes (any type) to occlusive vascular mortality (ischaemic heart disease, ischaemic stroke, or other atherosclerotic deaths) by age, sex, and other major vascular risk factors, and to assess whether the associations of blood pressure, total cholesterol, and body-mass index (BMI) to occlusive vascular mortality are modified by diabetes. Results Individual participant-level data were analysed from 980 793 adults. During 9·8 million person-years of follow-up, among participants aged between 35 and 89 years, 19 686 (25·6%) of 76 965 deaths were attributed to occlusive vascular disease. After controlling for major vascular risk factors, diabetes roughly doubled occlusive vascular mortality risk among men (death rate ratio [RR] 2·10, 95% CI 1·97–2·24) and tripled risk among women (3·00, 2·71–3·33; χ2 test for heterogeneity p<0·0001). For both sexes combined, the occlusive vascular death RRs were higher in younger individuals (aged 35–59 years: 2·60, 2·30–2·94) than in older individuals (aged 70–89 years: 2·01, 1·85–2·19; p=0·0001 for trend across age groups), and, across age groups, the death RRs were higher among women than among men. Therefore, women aged 35–59 years had the highest death RR across all age and sex groups (5·55, 4·15–7·44). However, since underlying confounder-adjusted occlusive vascular mortality rates at any age were higher in men than in women, the adjusted absolute excess occlusive vascular mortality associated with diabetes was similar for men and women. At ages 35–59 years, the excess absolute risk was 0·05% (95% CI 0·03–0·07) per year in women compared with 0·08% (0·05–0·10) per year in men; the corresponding excess at ages 70–89 years was 1·08% (0·84–1·32) per year in women and 0·91% (0·77–1·05) per year in men. Total cholesterol, blood pressure, and BMI each showed continuous log-linear associations with occlusive vascular mortality that were similar among individuals with and without diabetes across both sexes. Interpretation Independent of other major vascular risk factors, diabetes substantially increased vascular risk in both men and women. Lifestyle changes to reduce smoking and obesity and use of cost-effective drugs that target major vascular risks (eg, statins and antihypertensive drugs) are important in both men and women with diabetes, but might not reduce the relative excess risk of occlusive vascular disease in women with diabetes, which remains unexplained. Funding UK Medical Research Council, British Heart Foundation, Cancer Research UK, European Union BIOMED programme, and National Institute on Aging (US National Institutes of Health)

    Lung cancer and air pollution: a 27 year follow up of 16 209 Norwegian men

    No full text
    Background: The well documented urban/rural difference in lung cancer incidence and the detection of known carcinogens in the atmosphere have produced the hypothesis that long term air pollution may have an effect on lung cancer. The association between incidence of lung cancer and long term air pollution exposure was investigated in a cohort of Oslo men followed from 1972/73 to 1998. Methods: Data from a follow up study on cardiovascular risk factors among 16 209 40 to 49 year old Oslo men in 1972/73 were linked to data from the Norwegian cancer register, the Norwegian death register, and estimates of average yearly air pollution levels at the participants' home address in 1974 to 1998. Survival analyses, including Cox proportional hazards regression, were used to estimate associations between exposure and the incidence of lung cancer. Results: During the follow up period, 418 men developed lung cancer. Controlling for age, smoking habits, and length of education, the adjusted risk ratio for developing lung cancer was 1.08 (95% confidence interval, 1.02 to 1.15) for a 10 µg/m(3) increase in average home address nitrogen oxide (NO(x)) exposure between 1974 and 1978. Corresponding figures for a 10 µg/m(3) increase in sulphur dioxide (SO(2)) were 1.01 (0.94 to 1.08). Conclusions: Urban air pollution may increase the risk of developing lung cancer

    Association of cardiometabolic multimorbidity with mortality

    No full text
    Deborah Lawlor is an author/member of the Emerging Risk Factors CollaborationIMPORTANCE The prevalence of cardiometabolic multimorbidity is increasing. OBJECTIVE To estimate reductions in life expectancy associated with cardiometabolic multimorbidity. DESIGN, SETTING, AND PARTICIPANTS Age- and sex-adjusted mortality rates and hazard ratios (HRs) were calculated using individual participant data from the Emerging Risk Factors Collaboration (689 300 participants; 91 cohorts; years of baseline surveys: 1960-2007; latest mortality follow-up: April 2013; 128 843 deaths). The HRs from the Emerging Risk Factors Collaboration were compared with those from the UK Biobank (499 808 participants; years of baseline surveys: 2006-2010; latest mortality follow-up: November 2013; 7995 deaths). Cumulative survival was estimated by applying calculated age-specific HRs for mortality to contemporary US age-specific death rates. EXPOSURES A history of 2 or more of the following: diabetes mellitus, stroke, myocardial infarction (MI). MAIN OUTCOMES AND MEASURES All-cause mortality and estimated reductions in life expectancy. RESULTS In participants in the Emerging Risk Factors Collaboration without a history of diabetes, stroke, or MI at baseline (reference group), the all-cause mortality rate adjusted to the age of 60 years was 6.8 per 1000 person-years. Mortality rates per 1000 person-years were 15.6 in participants with a history of diabetes, 16.1 in those with stroke, 16.8 in those with MI, 32.0 in those with both diabetes and MI, 32.5 in those with both diabetes and stroke, 32.8 in those with both stroke and MI, and 59.5 in those with diabetes, stroke, and MI. Compared with the reference group, the HRs for all-cause mortality were 1.9 (95% CI, 1.8-2.0) in participants with a history of diabetes, 2.1 (95% CI, 2.0-2.2) in those with stroke, 2.0 (95% CI, 1.9-2.2) in those with MI, 3.7 (95% CI, 3.3-4.1) in those with both diabetes and MI, 3.8 (95% CI, 3.5-4.2) in those with both diabetes and stroke, 3.5 (95% CI, 3.1-4.0) in those with both stroke and MI, and 6.9 (95% CI, 5.7-8.3) in those with diabetes, stroke, and MI. The HRs from the Emerging Risk Factors Collaboration were similar to those from the more recently recruited UK Biobank. The HRs were little changed after further adjustment for markers of established intermediate pathways (eg, levels of lipids and blood pressure) and lifestyle factors (eg, smoking, diet). At the age of 60 years, a history of any 2 of these conditions was associated with 12 years of reduced life expectancy and a history of all 3 of these conditions was associated with 15 years of reduced life expectancy. CONCLUSIONS AND RELEVANCE Mortality associated with a history of diabetes, stroke, or MI was similar for each condition. Because any combination of these conditions was associated with multiplicative mortality risk, life expectancy was substantially lower in people with multimorbidity.The Emerging Risk Factors Collaboratio
    corecore