5,330 research outputs found

    JPL's parabolic dish test site

    Get PDF
    A parabolic dish test site (PDTS) was established in the California Mojave Desert to carry out work in testing solar point focusing concentrator systems and related hardware. The site was chosen because of its high solar insolation level and year around clear sky conditions. The various facilities and equipment at the PDTS, and the concentrator experiments being performed are described

    The QSO evolution derived from the HBQS and other complete QSO surveys

    Get PDF
    An ESO Key programme dedicated to an Homogeneous Bright QSO Survey (HBQS) has been completed. 327 QSOs (Mb<-23, 0.3<z<2.2) have been selected over 555 deg^2 with 15<B<18.75. For B<16.4 the QSO surface density turns out to be a factor 2.2 higher than what measured by the PG survey, corresponding to a surface density of 0.013+/-.006 deg^{-2}. If the Edinburgh QSO Survey is included, an overdensity of a factor 2.5 is observed, corresponding to a density of 0.016+/-0.005 deg^{-2}. In order to derive the QSO optical luminosity function (LF) we used Monte Carlo simulations that take into account of the selection criteria, photometric errors and QSO spectral slope distribution. The LF can be represented with a Pure Luminosity Evolution (L(z)\propto(1+z)^k) of a two power law both for q_0=0.5 and q_0=0.1. For q_0=0.5 k=3.26, slower than the previous Boyle's (1992) estimations of k=3.45. A flatter slope beta=-3.72 of the bright part of the LF is also required. The observed overdensity of bright QSOs is concentrated at z<0.6. It results that in the range 0.3<z<0.6 the luminosity function is flatter than observed at higher redshifts. In this redshift range, for Mb<-25, 32 QSOs are observed instead of 19 expected from our best-fit PLE model. This feature requires a luminosity dependent luminosity evolution in order to satisfactorily represent the data in the whole 0.3<z<2.2 interval.Comment: Invited talk in "Wide Field Spectroscopy" (20-24 May 1996, Athens), eds. M. Kontizas et al. 6 pages and 3 eps figures, LaTex file, uses epfs.sty and crckapb.sty (included

    Color Variability of the Blazar AO 0235+16

    Full text link
    Multicolor (UBVRIJHK) observations of the blazar AO 0235+16 are analyzed. The light curves were compiled at the Turin Observatory from literature data and the results of observations obtained in the framework of the WEBT program (http://www.to.astro/blazars/webt/). The color variability of the blazar was studied in eight time intervals with a sufficient number of multicolor optical observations; JHK data are available for only one of these. The spectral energy distribution (SED) of the variable component remained constant within each interval, but varied strongly from one interval to another. After correction for dust absorption, the SED can be represented by a power law in all cases, providing evidence for a synchrotron nature of the variable component. We show that the variability at both optical and IR wavelengths is associated with the same variable source.Comment: 11 pages, 9 figures, 4 tables, accepted for publication in Astronomy Report

    Neutron-skin thickness of 208^{208}Pb, and symmetry-energy constraints from the study of the anti-analog giant dipole resonance

    Full text link
    The 208^{208}Pb(pp,nγpˉn\gamma\bar p) 207^{207}Pb reaction at a beam energy of 30 MeV has been used to excite the anti-analog of the giant dipole resonance (AGDR) and to measure its γ\gamma-decay to the isobaric analog state in coincidence with proton decay of IAS. The energy of the transition has also been calculated with the self-consistent relativistic random-phase approximation (RRPA), and found to be linearly correlated to the predicted value of the neutron-skin thickness (ΔRpn\Delta R_{pn}). By comparing the theoretical results with the measured transition energy, the value of 0.190 ±\pm 0.028 fm has been determined for ΔRpn\Delta R_{pn} of 208^{208}Pb, in agreement with previous experimental results. The AGDR excitation energy has also been used to calculate the symmetry energy at saturation (J=32.7±0.6J=32.7 \pm 0.6 MeV) and the slope of the symmetry energy (L=49.7±4.4L=49.7 \pm 4.4 MeV), resulting in more stringent constraints than most of the previous studies.Comment: 6 pages, 5 figures. arXiv admin note: text overlap with arXiv:1205.232

    New Gauge Invariant Formulation of the Chern-Simons Gauge Theory

    Get PDF
    A new gauge invariant formulation of the relativistic scalar field interacting with Chern-Simons gauge fields is considered. This formulation is consistent with the gauge fixed formulation. Furthermore we find that canonical (Noether) Poincar\'e generators are not gauge invariant even on the constraints surface and do not satisfy the (classical) Poincar\'e algebra. It is the improved generators, constructed from the symmetric energy-momentum tensor, which are (manifestly) gauge invariant and obey the classical Poincar\'e algebra.Comment: Shortened, to appear as Papid Communication-PRD/Nov/9

    Level densities and thermodynamical properties of Pt and Au isotopes

    Full text link
    The nuclear level densities of 194196^{194-196}Pt and 197,198^{197,198}Au below the neutron separation energy have been measured using transfer and scattering reactions. All the level density distributions follow the constant-temperature description. Each group of isotopes is characterized by the same temperature above the energy threshold corresponding to the breaking of the first Cooper pair. A constant entropy excess ΔS=1.9\Delta S=1.9 and 1.11.1 kBk_B is observed in 195^{195}Pt and 198^{198}Au with respect to 196^{196}Pt and 197^{197}Au, respectively, giving information on the available single-particle level space for the last unpaired valence neutron. The breaking of nucleon Cooper pairs is revealed by sequential peaks in the microcanonical caloric curve

    Inductive voltage divider modeling in Matlab

    Get PDF
    Inductive voltage dividers have the most appropriate metrological characteristics on alternative current and are widely used for converting physical signals. The model of a double-decade inductive voltage divider was designed with the help of Matlab/Simulink. The first decade is an inductive voltage divider with balanced winding, the second decade is a single-stage inductive voltage divider. In the paper, a new transfer function algorithm was given. The study shows errors and differences that appeared between the third degree reduced model and a twenty degree unreduced model. The obtained results of amplitude error differ no more than by 7 % between the reduced and unreduced model

    Operator Ordering Problem of the Nonrelativistic Chern-Simons Theory

    Full text link
    The operator ordering problem due to the quantization or regularization ambiguity in the Chern-Simons theory exists. However, we show that this can be avoided if we require Galilei covariance of the nonrelativistic Abelian Chern-Simons theory even at the quantum level for the extended sources. The covariance can be recovered only by choosing some particular operator orderings for the generators of the Galilei group depending on the quantization ambiguities of the gaugemattergauge-matter commutation relation. We show that the desired ordering for the unusual prescription is not the same as the well-known normal ordering but still satisfies all the necessary conditions. Furthermore, we show that the equations of motion can be expressed in a similar form regardless of the regularization ambiguity. This suggests that the different regularization prescriptions do not change the physics. On the other hand, for the case of point sources the regularization prescription is uniquely determined, and only the orderings, which are equivalent to the usual one, are allowed.Comment: 18 page

    Completing the nuclear reaction puzzle of the nucleosynthesis of 92Mo

    Full text link
    One of the greatest questions for modern physics to address is how elements heavier than iron are created in extreme, astrophysical environments. A particularly challenging part of that question is the creation of the so-called p-nuclei, which are believed to be mainly produced in some types of supernovae. The lack of needed nuclear data presents an obstacle in nailing down the precise site and astrophysical conditions. In this work, we present for the first time measurements on the nuclear level density and average strength function of 92^{92}Mo. State-of-the-art p-process calculations systematically underestimate the observed solar abundance of this isotope. Our data provide stringent constraints on the 91^{91}Nb(p,γ)92(p,{\gamma})^{92}Mo reaction rate, which is the last unmeasured reaction in the nucleosynthesis puzzle of 92^{92}Mo. Based on our results, we conclude that the 92^{92}Mo abundance anomaly is not due to the nuclear physics input to astrophysical model calculations.Comment: Submitted to PR
    corecore