6,432 research outputs found

    Energy spectra of cosmic ray nuclei: 4z26 and .3E2 GeV/amu

    Get PDF
    Energy spectra of cosmic ray nuclei in the charge range 5 is less than or equal to z less than or equal to 26 have been derived from the response of an acrylic plastic Cerenkov detector. Data were obtained using a balloon borne detector and cover the energy range 320 is approximately less than e approximately less than 2200 MeV. amu. Spectra are derived from a formal deconvolution using the method of Lezniak (1975). Relative spectra of different elements are compared by observing charge ratios. Secondary primary ratios are observed to decrease with increasing energy, consistent with the effect previously observed at higher energy. Primary to primary ratios are constant for 6 is less than or equal to z less than or equal to 26 and 14 is less than or equal to z less than or equal to 26 but vary for 10 is less than or equal to z less than or equal to 14. This data is found to be consistent with existing data where comparable and lends strong support ot the idea of two separate source populations contributing to the cosmic ray composition

    Materials review for improved automotive gas turbine engine

    Get PDF
    The potential role of superalloys, refractory alloys, and ceramics in the hottest sections of engines operating with turbine inlet temperatures as high as 1370 C is examined. The convential superalloys, directionally solidified eutectics, oxide dispersion strenghened alloys, and tungsten fiber reinforced superalloys are reviewed and compared on the basis of maximum turbine blade temperature capability. Improved high temperature protective coatings and special fabrication techniques for these advanced alloys are discussed. Chromium, columbium, molybdenum, tantalum, and tungsten alloys are also reviewed. Molbdenum alloys are found to be the most suitable for mass produced turbine wheels. Various forms and fabrication processes for silicon nitride, silicon carbide, and SIALON's are investigated for use in highstress and medium stress high temperature environments

    Supersymmetry and the Chiral Schwinger Model

    Full text link
    We have constructed the N=1/2 supersymmetric general Abelian model with asymmetric chiral couplings. This leads to a N=1/2 supersymmetrization of the Schwinger model. We show that the supersymmetric general model is plagued with problems of infrared divergence. Only the supersymmetric chiral Schwinger model is free from such problems and is dynamically equivalent to the chiral Schwinger model because of the peculiar structure of the N=1/2 multiplets.Comment: one 9 pages Latex file, one ps file with one figur

    Global-in-time solutions for the isothermal Matovich-Pearson equations

    Get PDF
    In this paper we study the Matovich-Pearson equations describing the process of glass fiber drawing. These equations may be viewed as a 1D-reduction of the incompressible Navier-Stokes equations including free boundary, valid for the drawing of a long and thin glass fiber. We concentrate on the isothermal case without surface tension. Then the Matovich-Pearson equations represent a nonlinearly coupled system of an elliptic equation for the axial velocity and a hyperbolic transport equation for the fluid cross-sectional area. We first prove existence of a local solution, and, after constructing appropriate barrier functions, we deduce that the fluid radius is always strictly positive and that the local solution remains in the same regularity class. To the best of our knowledge, this is the first global existence and uniqueness result for this important system of equations

    New Gauge Invariant Formulation of the Chern-Simons Gauge Theory

    Get PDF
    A new gauge invariant formulation of the relativistic scalar field interacting with Chern-Simons gauge fields is considered. This formulation is consistent with the gauge fixed formulation. Furthermore we find that canonical (Noether) Poincar\'e generators are not gauge invariant even on the constraints surface and do not satisfy the (classical) Poincar\'e algebra. It is the improved generators, constructed from the symmetric energy-momentum tensor, which are (manifestly) gauge invariant and obey the classical Poincar\'e algebra.Comment: Shortened, to appear as Papid Communication-PRD/Nov/9

    Observational Challenges for the Standard FLRW Model

    Get PDF
    We summarise some of the main observational challenges for the standard Friedmann-Lemaitre-Robertson-Walker cosmological model and describe how results recently presented in the parallel session `Large--scale Structure and Statistics' (DE3) at the `Fourteenth Marcel Grossman Meeting on General Relativity' are related to these challenges.Comment: 17 pages; references added. Matches published version in Int. J. Mod. Phys. D; Report on Parallel Session DE3 of MG1

    On the Classification of UGC1382 as a Giant Low Surface Brightness Galaxy

    Get PDF
    We provide evidence that UGC1382, long believed to be a passive elliptical galaxy, is actually a giant low surface brightness (GLSB) galaxy which rivals the archetypical GLSB Malin 1 in size. Like other GLSB galaxies, it has two components: a high surface brightness disk galaxy surrounded by an extended low surface brightness (LSB) disk. For UGC1382, the central component is a lenticular system with an effective radius of 6 kpc. Beyond this, the LSB disk has an effective radius of ~38 kpc and an extrapolated central surface brightness of ~26 mag/arcsec^2. Both components have a combined stellar mass of ~8x10^10 M_sun, and are embedded in a massive (10^10 M_sun) low-density (<3 M_sun/pc^2) HI disk with a radius of 110 kpc, making this one of the largest isolated disk galaxies known. The system resides in a massive dark matter halo of at least 2x10^12 M_sun. Although possibly part of a small group, its low density environment likely plays a role in the formation and retention of the giant LSB and HI disks. We model the spectral energy distributions and find that the LSB disk is likely older than the lenticular component. UGC1382 has UV-optical colors typical of galaxies transitioning through the green valley. Within the LSB disk are spiral arms forming stars at extremely low efficiencies. The gas depletion time scale of ~10^11 yr suggests that UGC1382 may be a very long term resident of the green valley. We find that the formation and evolution of the LSB disk is best explained by the accretion of gas-rich LSB dwarf galaxies.Comment: 17 pages, 16 figures, 4 tables; accepted to the Astrophysical Journa

    Final Technology Review - Pitch Modulated Vibrato Function

    Get PDF
    Final Technology Review Written ReportArchitecture & Allied Art

    Electron-positron pair production in the Aharonov-Bohm potential

    Full text link
    In the framework of QED we evaluate the cross section for electron-positron pair production by a single photon in the presence of the external Aharonov-Bohm potential in first order of perturbation theory. We analyse energy, angular and polarization distributions at different energy regimes: near the threshold and at high photon energies.Comment: LaTeX file, 13 page
    corecore