730 research outputs found
Magnetic Response of Magnetospirillum Gryphiswaldense
In this study we modelled and measured the U-turn trajectories of individual
magnetotactic bacteria under the application of rotating magnetic fields,
ranging in ampitude from 1 to 12 mT. The model is based on the balance between
rotational drag and magnetic torque. For accurate verification of this model,
bacteria were observed inside 5 m tall microfluidic channels, so that they
remained in focus during the entire trajectory. From the analysis of hundreds
of trajectories and accurate measurements of bacteria and magnetosome chain
dimensions, we confirmed that the model is correct within measurement error.
The resulting average rate of rotation of Magnetospirillum Gryphiswaldense is
0.74 +- 0.03 rad/mTs.Comment: 17 pages, 12 figure
Wharton’s jelly or bone marrow mesenchymal stromal cells improve cardiac function following myocardial infarction for more than 32 weeks in a rat model: a preliminary report
The therapeutic effect of mesenchymal stromal cells (MSCs) following myocardial infarction (MI) is small. This may be due to differences in cellular sources and donor age, route of administration, in vitro cellular manipulations and the short time course of follow up in many animal studies. Here, we compared MSCs from two different sources (adult bone marrow or Wharton’s jelly from umbilical cord) for their long-term therapeutic effect following MI in a rat model to evaluate the effect of donor age. MSCs (or control infusions) were given intravenously 24-48 hr after myocardial ischemia (MI) induced by coronary artery ligation. Cardiac function was assessed by ultrasound at time points starting from before MSC infusion through 68 weeks after MI. A significant improvement in ejection fraction was seen in animals that received MSCs in time points 25 to 31 wks after treatment (p <0.01). These results support previous work that show that MSCs can cause improvement in cardiac function and extend that work by showing that the beneficial effects are durable. To investigate MSCs’ cardiac differentiation potential, Wharton’s jelly MSCs were co-cultured with fetal or adult bone-derived marrow MSCs. When Wharton’s jelly MSCs were co-cultured with fetal MSCs, and not with adult MSCs, myotube structures were observed in two-three days and spontaneous contractions (beating) cells were observed in fiveseven days. The beating structures formed a functional syncytium indicated by coordinated contractions (beating) of independent nodes. Taken together, these results suggest that MSCs given 24-48 hr after MI have a significant and durable beneficial effect more than 25 weeks after MI and that MSC treatment can home to damaged tissue and improve heart function after intravenous infusion 24-48 hrs after MI, and that WJCs may be a useful source for off-the-shelf cellular therapy for MI
Investigations at the Vollrath Blacksmith Shop (41BX786), San Antonio, Bexar County, Texas
In May 1988, archival research was initiated to evaluate the archaeological potential of New City Block 102, Lots 10 through 15, in downtown San Antonio, Texas, proposed site of the new Bexar County Justice Center parking garage. The research indicated that the southern portion of Lots 10 and 11 would required further investigation at the 1874 site of Vollrath\u27s blacksmith shop. Field excavations were conducted in August 1988. This report discusses the archival research and the results of the field excavations
Model energieverbruik melkveebedrijf
In het kader van de milieu- en energiedoelstellingen van de overheid staat het energieverbruik opnieuw in de belangstelling. De belangrijkste onderdelen voor de landbouw zijn het algeheel terugdringen van de CO, uitstoot met 3 tot 5 % en verbetering van de energie-efficiëntie door de agrarische sector met 30 % in 2000 ten opzichte van 1989/90
Quenched QCD at finite density
Simulations of quenched at relatively small but {\it nonzero} chemical
potential on lattices indicate that the nucleon
screening mass decreases linearly as increases predicting a critical
chemical potential of one third the nucleon mass, , by extrapolation.
The meson spectrum does not change as increases over the same range, from
zero to . Past studies of quenched lattice QCD have suggested that
there is phase transition at . We provide alternative
explanations for these results, and find a number of technical reasons why
standard lattice simulation techniques suffer from greatly enhanced
fluctuations and finite size effects for ranging from to
. We find evidence for such problems in our simulations, and suggest
that they can be surmounted by improved measurement techniques.Comment: 23 pages, Revte
The effects of dietary fish oil on exercising skeletal muscle vascular and metabolic control in chronic heart failure rats
The ATP-sensitive K+ (KATP) channel is a class of inward rectifier K+ channels that can link cellular metabolic status to vasomotor tone across the metabolic transients seen with exercise. This investigation tested the hypothesis that if KATP channels are crucial to exercise hyperaemia then blockade via glibenclamide (GLI) would lower hindlimb skeletal muscle blood flow (BF) and vascular conductance (VC) during treadmill exercise. In 14 adult male Sprague Dawley rats mean arterial pressure (MAP), blood [lactate], and hindlimb muscle BF (radiolabelled microspheres) were determined at rest (n = 6) or during exercise (n = 8; 20 m min⁻¹, 5% incline) under control (CON) and GLI conditions (5 mg kg⁻¹, i.a). At rest and during exercise, MAP was higher (Rest, CON: 130 ± 6, GLI: 152 ± 8; Exercise, CON: 140 ± 4, GLI: 147 ± 4 mmHg, P < 0.05) and heart rate (HR) was lower (Rest, CON: 440 ± 16, GLI: 410 ± 18; Exercise, CON: 560 ± 4, GLI: 540 ± 10 beats min⁻¹, P < 0.05) with GLI. Hindlimb muscle BF (CON: 144 ± 10, GLI: 120 ± 9 ml min⁻¹ (100 g)⁻¹, P < 0.05) and VC were lower with GLI during exercise but not at rest. Specifically, GLI decreased BF in 12, and VC in 16, of the 28 individual hindlimb muscles and muscle parts sampled during exercise with a greater fractional reduction present in muscles comprised predominantly of type I and type IIa fibres (P < 0.05). Additionally, blood [lactate] (CON: 2.0 ± 0.3; GLI: 4.1 ± 0.9 mmol L⁻¹, P < 0.05) was higher during exercise with GLI. That KATP channel blockade reduces hindlimb muscle BF during exercise in rats supports the obligatory contribution of KATP channels in large muscle mass exercise-induced hyperaemia
Magnitude of off-target allo-HLA reactivity by third-party donor-derived virus-specific T cells is dictated by HLA-restriction
T-cell products derived from third-party donors are clinically applied, but harbor the risk of off-target toxicity via induction of allo-HLA cross-reactivity directed against mismatched alleles. We used third-party donor-derived virus-specific T cells as model to investigate whether virus-specificity, HLA restriction and/or HLA background can predict the risk of allo-HLA cross-reactivity. Virus-specific CD8(pos) T cells were isolated from HLA-A*01:01/B*08:01 or HLA-A*02:01/B*07:02 positive donors. Allo-HLA cross-reactivity was tested using an EBV-LCL panel covering 116 allogeneic HLA molecules and confirmed using K562 cells retrovirally transduced with single HLA-class-I alleles of interest. HLA-B*08:01-restricted T cells showed the highest frequency and diversity of allo-HLA cross-reactivity, regardless of virus-specificity, which was skewed toward multiple recurrent allogeneic HLA-B molecules. Thymic selection for other HLA-B alleles significantly influenced the level of allo-HLA cross-reactivity mediated by HLA-B*08:01-restricted T cells. These results suggest that the degree and specificity of allo-HLA cross-reactivity by T cells follow rules. The risk of off-target toxicity after infusion of incompletely matched third-party donor-derived virus-specific T cells may be reduced by selection of T cells with a specific HLA restriction and background.Immunobiology of allogeneic stem cell transplantation and immunotherapy of hematological disease
Vimentin Levels and Serine 71 Phosphorylation in the Control of Cell-Matrix Adhesions, Migration Speed, and Shape of Transformed Human Fibroblasts
Metastasizing tumor cells show increased expression of the intermediate filament (IF) protein vimentin, which has been used to diagnose invasive tumors for decades. Recent observations indicate that vimentin is not only a passive marker for carcinoma, but may also induce tumor cell invasion. To clarify how vimentin IFs control cell adhesions and migration, we analyzed the nanoscale (30–50 nm) spatial organization of vimentin IFs and cell-matrix adhesions in metastatic fibroblast cells, using three-color stimulated emission depletion (STED) microscopy. We also studied whether wild-type and phospho-deficient or -mimicking mutants of vimentin changed the size and lifetime of focal adhesions (FAs), cell shape, and cell migration, using live-cell total internal reflection imaging and confocal microscopy. We observed that vimentin exists in fragments of different lengths. Short fragments were mostly the size of a unit-length filament and were mainly localized close to small cell-matrix adhesions. Long vimentin filaments were found in the proximity of large FAs. Vimentin expression in these cells caused a reduction in FAs size and an elongated cell shape, but did not affect FA lifetime, or the speed or directionality of cell migration. Expression of a phospho-mimicking mutant (S71D) of vimentin increased the speed of cell migration. Taken together, our results suggest that in highly migratory, transformed mesenchymal cells, vimentin levels control the cell shape and FA size, but not cell migration, which instead is linked to the phosphorylation status of S71 vimentin. These observations are consistent with the possibility that not only levels, but also the assembly status of vimentin control cell migration
Simplivariate Models: Uncovering the Underlying Biology in Functional Genomics Data
One of the first steps in analyzing high-dimensional functional genomics data is an exploratory analysis of such data. Cluster Analysis and Principal Component Analysis are then usually the method of choice. Despite their versatility they also have a severe drawback: they do not always generate simple and interpretable solutions. On the basis of the observation that functional genomics data often contain both informative and non-informative variation, we propose a method that finds sets of variables containing informative variation. This informative variation is subsequently expressed in easily interpretable simplivariate components
- …