31 research outputs found

    What Stimulates Researchers to Make Their Research Usable? Towards an Openness Approach

    Get PDF
    Ambiguity surrounding the effect of external engagement on academic research has raised questions about what motivates researchers to collaborate with third parties. We argue that what matters for society is research that can be absorbed by users. We define openness as a willingness by researchers to make research more usable by external partners by responding to external influences in their own research practices. We ask what kinds of characteristics define those researchers who are more open to creating usable knowledge. Our empirical study analyses a sample of 1583 researchers working at the Spanish Council for Scientific Research (CSIC). Results demonstrate that it is personal factors (academic identity and past experience) that determine which researchers have open behaviours. The paper concludes that policies to encourage external engagement should focus on experiences which legitimate and validate knowledge produced through user encounters, both at the academic formation career stage as well as through providing ongoing opportunities to engage with third parties.The data used for this study comes from the IMPACTO project funded by the Spanish Council for Scientific Research - CSIC (Ref. 200410E639). The work also benefited from a mobility grant awarded by Eu-Spri Forum to Julia Olmos Penuela & Paul Benneworth for her visiting research to the Center of Higher Education Policy Studies. Finally, Julia Olmos Penuela also benefited from a post-doctoral grant funded by the Generalitat Valenciana (APOSTD-2014-A-006).Olmos-Peñuela, J.; Benneworth, P.; Castro-Martínez, E. (2015). What Stimulates Researchers to Make Their Research Usable? Towards an Openness Approach. Minerva. 53(4):381-410. https://doi.org/10.1007/s11024-015-9283-4S381410534Abreu, Maria, Vadim Grinevich, Alan Hughes, and Michael Kitson. 2009. Knowledge exchange between academics and the business, public and third sectors. Cambridge: Centre for Business Research and UK-IRC.Aghion, Philippe, Mathias Dewatripont, and Jeremy C. Stein. 2008. Academic freedom, private-sector focus, and the process of innovation. RAND Journal of Economics 39: 617–635.Ajzen, Icek. 2001. Nature and operation of attitudes. Annual Review of Psychology 52(1): 27–58.Alrøe, Hugo Fjelsted, and Erik Steen Kristensen. 2002. Towards a systemic research methodology in agriculture: Rethinking the role of values in science. Agriculture and Human Values 19(1): 3–23.Audretsch, David B., Werner Bönte, and Stefan Krabel. 2010. Why do scientists in public research institutions cooperate with private firms. In DRUID Working Paper, 10–27.Baldini, Nicola, Rosa Grimaldi, and Maurizio Sobrero. 2007. To patent or not to patent? A survey of Italian inventors on motivations, incentives, and obstacles to university patenting. Scientometrics 70(2): 333–354.Bandura, Albert. 1977. Social learning theory. Englewood Cliffs, NJ: Prentice-Hall.Barnett, R. 2009. Knowing and becoming in the higher education curriculum. Studies in Higher Education 34(4): 429–440.Becher, Tony. 1994. The significance of disciplinary differences. Studies in Higher Education 19(2): 151–161.Becher, Tony, and Paul Trowler. 2001. Academic tribes and territories: Intellectual enquiry and the culture of disciplines. McGraw-Hill International.Bekkers, Rudi, and Isabel Maria Bodas Freitas. 2008. Analysing knowledge transfer channels between universities and industry: To what degree do sectors also matter? Research Policy 37(10): 1837–1853.Belderbos, René, Martin Carree, Bert Diederen, Boris Lokshin, and Reinhilde Veugelers. 2004. Heterogeneity in R&D cooperation strategies. International Journal of Industrial Organization 22(8): 1237–1263.Benner, Mats, and Ulf Sandström. 2000. Institutionalizing the triple helix: Research funding and norms in the academic system. Research Policy 29(2): 291–301.Bercovitz, Janet, and Maryann Feldman. 2008. Academic entrepreneurs: Organizational change at the individual level. Organization Science 19(1): 69–89.Berman, Elizabeth Popp. 2011. Creating the market university: How academic science became an economic engine. Princeton University Press.Bleiklie, Ivar, and Roar Høstaker. 2004. Modernizing research training-education and science policy between profession, discipline and academic institution. Higher Education Policy 17(2): 221–236.Bozeman, Barry, Daniel Fay, and Catherine P. Slade. 2013. Research collaboration in universities and academic entrepreneurship: The-state-of-the-art. The Journal of Technology Transfer 38(1): 1–67.Collini, Stefan. 2009. Impact on humanities: Researchers must take a stand now or be judged and rewarded as salesmen. The Times Literary Supplement 5563: 18–19.D’Este, Pablo, and Markus Perkmann. 2011. Why do academics engage with industry? The entrepreneurial university and individual motivations. The Journal of Technology Transfer 36(3): 316–339.D’Este, Pablo, Oscar Llopis, and Alfredo Yegros. 2013. Conducting pro-social research: Cognitive diversity, research excellence and awareness about the social impact of research: INGENIO (CSIC-UPV) Working Paper Series.Deem, Rosemary, and Lisa Lucas. 2007. Research and teaching cultures in two contrasting UK policy contexts: Academic life in education departments in five English and Scottish universities. Higher Education 54(1): 115–133.DiMaggio, Paul J., and Walter W. Powell. 1983. The iron cage revisited: Institutional isomorphism and collective rationality in organizational fields. American Sociological Review 48(2): 147–160.Downing, David B. 2005. The knowledge contract: Politics and paradigms in the academic workplace. Lincoln: Nebraska University of Nebraska Press.Donovan, Claire. 2007. The qualitative future of research evaluation. Science and Public Policy 34(8): 585–597.Durning, Bridget. 2004. Planning academics and planning practitioners: Two tribes or a community of practice? Planning Practice and Research 19(4): 435–446.Edquist, Charles. 1997. System of innovation approaches: Their emergence and characteristics. In Systems of innovation: Technologies, institutions and organizations, ed. C. Edquist, 1–35. London: Pinter.Etzkowitz, Henry, and Loet Leydesdorff. 2000. The dynamics of innovation: from National Systems and “Mode 2” to a Triple Helix of university–industry–government relations. Research Policy 29(2): 109–123.Fromhold-Eisebith, Martina, Claudia Werker, and Marcel Vojnic. 2014. Tracing the social dimension in innovation networks. In The social dynamics of innovation networks, eds. Roel Rutten, Paul Benneworth, Frans Boekema, and Dessy Irawati. London: Routledge (in press).Geuna, Aldo, and Alessandro Muscio. 2009. The governance of university knowledge transfer: A critical review of the literature. Minerva 47(1): 93–114.Gibbons, Michael, Camille Limoges, Helga Nowotny, Simon Schwartzman, Peter Scott, and Martin Trow. 1994. The new production of knowledge: The dynamics of science and research in contemporary societies. London: Sage.Gläser, Jochen. 2012. How does Governance change research content? On the possibility of a sociological middle-range theory linking science policy studies to the sociology of scientific knowledge. Technical University Berlin. Technology Studies Working Papers. http://www.ts.tu-berlin.de/fileadmin/fg226/TUTS/TUTS-WP-1-2012.pdf . Accessed 16 Feb 2015.Goethner, Maximilian, Martin Obschonka, Rainer K. Silbereisen, and Uwe Cantner. 2012. Scientists’ transition to academic entrepreneurship: Economic and psychological determinants. Journal of Economic Psychology 33(3): 628–641.Gulbrandsen, Magnus, and Jens-Christian Smeby. 2005. Industry funding and university professors’ research performance. Research Policy 34(6): 932–950.Haeussler, Carolin, and Jeannette Colyvas. 2011. Breaking the ivory tower: Academic entrepreneurship in the life sciences in UK and Germany. Research Policy 40(1): 41–54.Hessels, Laurens K., Harro van Lente, John Grin, and Ruud E.H.M. Smits. 2011. Changing struggles for relevance in eight fields of natural science. Industry and Higher Education 25(5): 347–357.Hessels, Laurens K., and Harro Van Lente. 2008. Re-thinking new knowledge production: A literature review and a research agenda. Research Policy 37(4): 740–760.Hoye, Kate, and Fred Pries. 2009. ‘Repeat commercializers’, the ‘habitual entrepreneurs’ of university–industry technology transfer. Technovation 29(10): 682–689.Jacobson, Nora, Dale Butterill, and Paula Goering. 2004. Organizational factors that influence university-based researchers’ engagement in knowledge transfer activities. Science Communication 25(3): 246–259.Jain, Sanjay, Gerard George, and Mark Maltarich. 2009. Academics or entrepreneurs? Investigating role identity modification of university scientists involved in commercialization activity. Research Policy 38(6): 922–935.Jasanoff, Sheila, and Sang-Hyun Kim. 2013. Sociotechnical imaginaries and national energy policies. Science as Culture 22(2): 189–196.Jensen, Pablo. 2011. A statistical picture of popularization activities and their evolutions in France. Public Understanding of Science 20(1): 26–36.Kitcher, Philip. 2001. Science, truth, and democracy. Oxford: Oxford University Press.Knorr-Cetina, Karin. 1981. The manufacture of knowledge: An essay on the constructivist and contextual nature of science. Oxford: Pergamon Press.Kronenberg, Kristin, and Marjolein Caniëls. 2014. Professional proximity in research collaborations. In The social dynamics of innovation networks, eds. Roel Rutten, Paul Benneworth, Frans Boekema, and Dessy Irawati. London: Routledge (in press).Krueger, Rob, and David Gibbs. 2010. Competitive global city regions and sustainable development’: An interpretive institutionalist account in the South East of England. Environment and planning A 42: 821–837.Lam, Alice. 2011. What motivates academic scientists to engage in research commercialization: ‘Gold’, ‘ribbon’ or ‘puzzle’? Research Policy 40(10): 1354–1368.Landry, Réjean, Malek Saïhi, Nabil Amara, and Mathieu Ouimet. 2010. Evidence on how academics manage their portfolio of knowledge transfer activities. Research Policy 39(10): 1387–1403.Lee, Alison, and David Boud. 2003. Writing groups, change and academic identity: Research development as local practice. Studies in Higher Education 28(2): 187–200.Lee, Yong S. 1996. ‘Technology transfer’ and the research university: A search for the boundaries of university–industry collaboration. Research Policy 25(6): 843–863.Lee, Yong S. 2000. The sustainability of university–industry research collaboration: An empirical assessment. The Journal of Technology Transfer 25(2): 111–133.Leisyte, Liudvika, Jürgen Enders, and Harry De Boer. 2008. The freedom to set research agendas—illusion and reality of the research units in the Dutch Universities. Higher Education Policy 21(3): 377–391.Louis, Karen Seashore, David Blumenthal, Michael E. Gluck, and Michael A. Stoto. 1989. Entrepreneurs in academe: An exploration of behaviors among life scientists. Administrative Science Quarterly 34(1): 110–131.Lowe, Philip, Jeremy Phillipson, and Katy Wilkinson. 2013. Why social scientists should engage with natural scientists. Contemporary Social Science 8(3): 207–222.Martín-Sempere, María José, Belén Garzón-García, and Jesús Rey-Rocha. 2008. Scientists’ motivation to communicate science and technology to the public: Surveying participants at the Madrid Science Fair. Public Understanding of Science 17(3): 349–367.Martin, Ben. 2003. The changing social contract for science and the evolution of the university. In Science and innovation: Rethinking the rationales for funding and governance, eds. A. Geuna, A.J. Salter, and W.E. Steinmueller, 7–29. Cheltenhan: Edward Elgar.Merton, Robert K. 1973. The sociology of science: Theoretical and empirical investigations. Chicago: University of Chicago Press.Miller, Thaddeus R., and Mark W. Neff. 2013. De-facto science policy in the making: how scientists shape science policy and why it matters (or, why STS and STP scholars should socialize). Minerva 51(3): 295–315.Muthén, Bengt O. 1998–2004. Mplus Technical Appendices. Muthén & Muthén. Los Angeles, CA.: Muthén & Muthén.Nedeva, Maria. 2013. Between the global and the national: Organising European science. Research Policy 42(1): 220–230.Neff, Mark William. 2014. Research prioritization and the potential pitfall of path dependencies in coral reef science. Minerva 52(2): 213–235.Nelson, Richard R. 2001. Observations on the post-Bayh-Dole rise of patenting at American universities. The Journal of Technology Transfer 26(1): 13–19.Nowotny, Helga, Peter Scott, and Michael Gibbons. 2001. Re-thinking science: Knowledge and the public in an age of uncertainty. Cambridge: Polity Press.Olmos-Peñuela, Julia, Paul Benneworth, and Elena Castro-Martínez. 2014a. Are ‘STEM from Mars and SSH from Venus’? Challenging disciplinary stereotypes of research’s social value. Science and Public Policy 41: 384–400.Olmos-Peñuela, Julia, Elena Castro-Martínez, and Manuel Fernández-Esquinas. 2014b. Diferencias entre áreas científicas en las prácticas de divulgación de la investigación: un estudio empírico en el CSIC. Revista Española de Documentación Científica. doi: 10.3989/redc.2014.2.1096 .Ouimet, Mathieu, Nabil Amara, Réjean Landry, and John Lavis. 2007. Direct interactions medical school faculty members have with professionals and managers working in public and private sector organizations: A cross-sectional study. Scientometrics 72(2): 307–323.Perkmann, Markus, Valentina Tartari, Maureen McKelvey, Erkko Autio, Anders Brostrom, Pablo D’Este, Riccardo Fini, et al. 2013. Academic engagement and commercialisation: A review of the literature on university-industry relations. Research Policy 42(2): 423–442.Philpott, Kevin, Lawrence Dooley, Caroline O’Reilly, and Gary Lupton. 2011. The entrepreneurial university: Examining the underlying academic tensions. Technovation 31(4): 161–170.Rutten, Roel, and Frans Boekema. 2012. From learning region to learning in a socio-spatial context. Regional Studies 46(8): 981–992.Sarewitz, Daniel, and Roger A. Pielke. 2007. The neglected heart of science policy: reconciling supply of and demand for science. Environmental Science & Policy 10(1): 5–16.Sauermann, Henry, and Paula Stephan. 2013. Conflicting logics? A multidimensional view of industrial and academic science. Organization Science 24(3): 889–909.Schein, Edgar H. 1985. Organizational culture and leadership: A dynamic view. San Francisco, CA: Jossey-Bass.Shane, Scott. 2000. Prior knowledge and the discovery of entrepreneurial opportunities. Organization Science 11(4): 448–469.Spaapen, Jack, and Leonie van Drooge. 2011. Introducing ‘productive interactions’ in social impact assessment. Research Evaluation 20(3): 211–218.Stokes, Donald E. 1997. Pasteur’s quadrant: Basic science and technological innovation. Washington, DC: Brookings Institution Press.Tartari, Valentina, and Stefano Breschi. 2012. Set them free: scientists’ evaluations of the benefits and costs of university–industry research collaboration. Industrial and Corporate Change 21(5): 1117–1147.Tinker, Tony, and Rob Gray. 2003. Beyond a critique of pure reason: From policy to politics to praxis in environmental and social research. Accounting, Auditing & Accountability Journal 16(5): 727–761.van Rijnsoever, Frank J., Laurens K. Hessels, and Rens L.J. Vandeberg. 2008. A resource-based view on the interactions of university researchers. Research Policy 37(8): 1255–1266.Venkataraman, Sankaran. 1997. The distinctive domain of entrepreneurship research: An editor’s perspective. Advances in Entrepreneurship, Firm Emergence, and Growth 3: 119–138.Verspagen, Bart. 2006. University research, intellectual property rights and European innovation systems. Journal of Economic Surveys 20(4): 607–632.Villanueva-Felez, Africa, Jordi Molas-Gallart, and Alejandro Escribá-Esteve. 2013. Measuring personal networks and their relationship with scientific production. Minerva 51(4): 465–483.Watermeyer, Richard. 2015. Lost in the ‘third space’: the impact of public engagement in higher education on academic identity, research practice and career progression. European Journal of Higher Education (online first, doi: 10.1080/21568235.2015.1044546 ).Weingart, Peter. 2009. Editorial for Issue 47/3. Minerva 47(3): 237–239.Ziman, John. 1996. ‘Postacademic science’: Constructing knowledge with networks and norms. Science Studies 1: 67–80.Zomer, Arend H., Ben W.A. Jongbloed, and Jürgen Enders. 2010. Do spin-offs make the academics’ heads spin? The impacts of spin-off companies on their parent research organisation. Minerva 48(3): 331–353

    Identification of constrained sequence elements across 239 primate genomes

    Get PDF
    Noncoding DNA is central to our understanding of human gene regulation and complex diseases1,2, and measuring the evolutionary sequence constraint can establish the functional relevance of putative regulatory elements in the human genome3–9. Identifying the genomic elements that have become constrained specifically in primates has been hampered by the faster evolution of noncoding DNA compared to protein-coding DNA10, the relatively short timescales separating primate species11, and the previously limited availability of whole-genome sequences12. Here we construct a whole-genome alignment of 239 species, representing nearly half of all extant species in the primate order. Using this resource, we identified human regulatory elements that are under selective constraint across primates and other mammals at a 5% false discovery rate. We detected 111,318 DNase I hypersensitivity sites and 267,410 transcription factor binding sites that are constrained specifically in primates but not across other placental mammals and validate their cis-regulatory effects on gene expression. These regulatory elements are enriched for human genetic variants that affect gene expression and complex traits and diseases. Our results highlight the important role of recent evolution in regulatory sequence elements differentiating primates, including humans, from other placental mammals

    Clinical complexity and impact of the ABC (Atrial fibrillation Better Care) pathway in patients with atrial fibrillation: a report from the ESC-EHRA EURObservational Research Programme in AF General Long-Term Registry

    Get PDF
    Background: Clinical complexity is increasingly prevalent among patients with atrial fibrillation (AF). The ‘Atrial fibrillation Better Care’ (ABC) pathway approach has been proposed to streamline a more holistic and integrated approach to AF care; however, there are limited data on its usefulness among clinically complex patients. We aim to determine the impact of ABC pathway in a contemporary cohort of clinically complex AF patients. Methods: From the ESC-EHRA EORP-AF General Long-Term Registry, we analysed clinically complex AF patients, defined as the presence of frailty, multimorbidity and/or polypharmacy. A K-medoids cluster analysis was performed to identify different groups of clinical complexity. The impact of an ABC-adherent approach on major outcomes was analysed through Cox-regression analyses and delay of event (DoE) analyses. Results: Among 9966 AF patients included, 8289 (83.1%) were clinically complex. Adherence to the ABC pathway in the clinically complex group reduced the risk of all-cause death (adjusted HR [aHR]: 0.72, 95%CI 0.58–0.91), major adverse cardiovascular events (MACEs; aHR: 0.68, 95%CI 0.52–0.87) and composite outcome (aHR: 0.70, 95%CI: 0.58–0.85). Adherence to the ABC pathway was associated with a significant reduction in the risk of death (aHR: 0.74, 95%CI 0.56–0.98) and composite outcome (aHR: 0.76, 95%CI 0.60–0.96) also in the high-complexity cluster; similar trends were observed for MACEs. In DoE analyses, an ABC-adherent approach resulted in significant gains in event-free survival for all the outcomes investigated in clinically complex patients. Based on absolute risk reduction at 1 year of follow-up, the number needed to treat for ABC pathway adherence was 24 for all-cause death, 31 for MACEs and 20 for the composite outcome. Conclusions: An ABC-adherent approach reduces the risk of major outcomes in clinically complex AF patients. Ensuring adherence to the ABC pathway is essential to improve clinical outcomes among clinically complex AF patients

    Impact of renal impairment on atrial fibrillation: ESC-EHRA EORP-AF Long-Term General Registry

    Get PDF
    Background: Atrial fibrillation (AF) and renal impairment share a bidirectional relationship with important pathophysiological interactions. We evaluated the impact of renal impairment in a contemporary cohort of patients with AF. Methods: We utilised the ESC-EHRA EORP-AF Long-Term General Registry. Outcomes were analysed according to renal function by CKD-EPI equation. The primary endpoint was a composite of thromboembolism, major bleeding, acute coronary syndrome and all-cause death. Secondary endpoints were each of these separately including ischaemic stroke, haemorrhagic event, intracranial haemorrhage, cardiovascular death and hospital admission. Results: A total of 9306 patients were included. The distribution of patients with no, mild, moderate and severe renal impairment at baseline were 16.9%, 49.3%, 30% and 3.8%, respectively. AF patients with impaired renal function were older, more likely to be females, had worse cardiac imaging parameters and multiple comorbidities. Among patients with an indication for anticoagulation, prescription of these agents was reduced in those with severe renal impairment, p <.001. Over 24 months, impaired renal function was associated with significantly greater incidence of the primary composite outcome and all secondary outcomes. Multivariable Cox regression analysis demonstrated an inverse relationship between eGFR and the primary outcome (HR 1.07 [95% CI, 1.01–1.14] per 10 ml/min/1.73 m2 decrease), that was most notable in patients with eGFR <30 ml/min/1.73 m2 (HR 2.21 [95% CI, 1.23–3.99] compared to eGFR ≥90 ml/min/1.73 m2). Conclusion: A significant proportion of patients with AF suffer from concomitant renal impairment which impacts their overall management. Furthermore, renal impairment is an independent predictor of major adverse events including thromboembolism, major bleeding, acute coronary syndrome and all-cause death in patients with AF

    Impact of clinical phenotypes on management and outcomes in European atrial fibrillation patients: a report from the ESC-EHRA EURObservational Research Programme in AF (EORP-AF) General Long-Term Registry

    Get PDF
    Background: Epidemiological studies in atrial fibrillation (AF) illustrate that clinical complexity increase the risk of major adverse outcomes. We aimed to describe European AF patients\u2019 clinical phenotypes and analyse the differential clinical course. Methods: We performed a hierarchical cluster analysis based on Ward\u2019s Method and Squared Euclidean Distance using 22 clinical binary variables, identifying the optimal number of clusters. We investigated differences in clinical management, use of healthcare resources and outcomes in a cohort of European AF patients from a Europe-wide observational registry. Results: A total of 9363 were available for this analysis. We identified three clusters: Cluster 1 (n = 3634; 38.8%) characterized by older patients and prevalent non-cardiac comorbidities; Cluster 2 (n = 2774; 29.6%) characterized by younger patients with low prevalence of comorbidities; Cluster 3 (n = 2955;31.6%) characterized by patients\u2019 prevalent cardiovascular risk factors/comorbidities. Over a mean follow-up of 22.5 months, Cluster 3 had the highest rate of cardiovascular events, all-cause death, and the composite outcome (combining the previous two) compared to Cluster 1 and Cluster 2 (all P <.001). An adjusted Cox regression showed that compared to Cluster 2, Cluster 3 (hazard ratio (HR) 2.87, 95% confidence interval (CI) 2.27\u20133.62; HR 3.42, 95%CI 2.72\u20134.31; HR 2.79, 95%CI 2.32\u20133.35), and Cluster 1 (HR 1.88, 95%CI 1.48\u20132.38; HR 2.50, 95%CI 1.98\u20133.15; HR 2.09, 95%CI 1.74\u20132.51) reported a higher risk for the three outcomes respectively. Conclusions: In European AF patients, three main clusters were identified, differentiated by differential presence of comorbidities. Both non-cardiac and cardiac comorbidities clusters were found to be associated with an increased risk of major adverse outcomes

    Do people willfully ignore decision support? Evidence from an online experiment

    Full text link

    Smart Short Term Capacity Planning: A Reinforcement Learning Approach

    No full text
    Part 4: Learning and Robust Decision Support Systems for Agile Manufacturing environmentsInternational audienceCapacity planning is an important production control function that significantly influences firm performance. Especially, in the short term, we face a dynamically changing system which calls for an adaptive capacity planning system that reacts based on the current state of the shop floor. Thus, this paper analyzes the performance of a reinforcement learning (RL) algorithm for overtime planning for a make-to-order job shop. We compare the performance of the RL algorithm to mechanisms that set overtime-hours statically or randomly over time. Performance is measured in total costs which consist of overtime, holding and backorder costs. The results show that our tested benchmarks can be outperformed by the RL algorithm, where the major savings were achieved due to less needed overtime

    Integrated and hierarchical systems for coordinating order acceptance and release planning

    No full text
    We present hierarchical models for coordinating order acceptance and release planning under load-dependent lead times. Our integrated models use detailed information at the item level, while the hierarchical models decompose the decision process into order acceptance and order release subproblems that are solved sequentially. Demand uncertainty is addressed by implementing the proposed models in a rolling horizon framework, and by including chance-constraints that include safety stock to address demand uncertainty. Simulation experiments show that the hierarchical models can capture almost all of the benefit of coordinated order acceptance and release and require less computational effort. The chance-constrained models that build safety stocks are effective in the face of uncertain order quantities. (C) 2022 Elsevier B.V. All rights reserved

    Glucose 6-phosphate dehydrogenase 6-phosphogluconolactonase: characterization of the Plasmodium vivax enzyme and inhibitor studies

    No full text
    Abstract Background Since malaria parasites highly depend on ribose 5-phosphate for DNA and RNA synthesis and on NADPH as a source of reducing equivalents, the pentose phosphate pathway (PPP) is considered an excellent anti-malarial drug target. In Plasmodium, a bifunctional enzyme named glucose 6-phosphate dehydrogenase 6-phosphogluconolactonase (GluPho) catalyzes the first two steps of the PPP. PfGluPho has been shown to be essential for the growth of blood stage Plasmodium falciparum parasites. Methods Plasmodium vivax glucose 6-phosphate dehydrogenase (PvG6PD) was cloned, recombinantly produced in Escherichia coli, purified, and characterized via enzyme kinetics and inhibitor studies. The effects of post-translational cysteine modifications were assessed via western blotting and enzyme activity assays. Genetically encoded probes were employed to study the effects of G6PD inhibitors on the cytosolic redox potential of Plasmodium. Results Here the recombinant production and characterization of PvG6PD, the C-terminal and NADPH-producing part of PvGluPho, is described. A comparison with PfG6PD (the NADPH-producing part of PfGluPho) indicates that the P. vivax enzyme has higher K M values for the substrate and cofactor. Like the P. falciparum enzyme, PvG6PD is hardly affected by S-glutathionylation and moderately by S-nitrosation. Since there are several naturally occurring variants of PfGluPho, the impact of these mutations on the kinetic properties of the enzyme was analysed. Notably, in contrast to many human G6PD variants, the mutations resulted in only minor changes in enzyme activity. Moreover, nanomolar IC50 values of several compounds were determined on P. vivax G6PD (including ellagic acid, flavellagic acid, and coruleoellagic acid), inhibitors that had been previously characterized on PfGluPho. ML304, a recently developed PfGluPho inhibitor, was verified to also be active on PvG6PD. Using genetically encoded probes, ML304 was confirmed to disturb the cytosolic glutathione-dependent redox potential of P. falciparum blood stage parasites. Finally, a new series of novel small molecules with the potential to inhibit the falciparum and vivax enzymes were synthesized, resulting in two compounds with nanomolar activity. Conclusion The characterization of PvG6PD makes this enzyme accessible to further drug discovery activities. In contrast to naturally occurring G6PD variants in the human host that can alter the kinetic properties of the enzyme and thus the redox homeostasis of the cells, the naturally occurring PfGluPho variants studied here are unlikely to have a major impact on the parasites’ redox homeostasis. Several classes of inhibitors have been successfully tested and are presently being followed up
    corecore