319 research outputs found

    Alignment of the ATLAS Inner Detector

    Get PDF
    The ATLAS experiment at the LHC is currently under construction at CERN and will start operation in summer 2008. The Inner Detector of ATLAS is designed to measure the momentum of charged particles and to reconstruct primary and secondary vertices. It consists of a silicon pixel detector, a silicon strip detector and a straw tube detector. For optimal performance of the Inner Detector the position of all active detector elements must be known with a precision of a few microns. The ultimate precision will be reached with a trackbased alignment algorithm. The different alignment methods currently investigated for the ATLAS Inner Detector are presented, as well as the various computational aspects regarding track-based alignment. Results from simulation studies as well as results from testbeam and cosmic ray detector setups are shown and discussed

    Building the ACS Exams Anchoring Concept Content Map for Undergraduate Chemistry

    Get PDF
    The ability to coherently assess content knowledge throughout an entire undergraduate career represents a significant advantage for programmatic assessment strategies. Chemistry, as a discipline, has an unusual tool in this regard because of the nationally standardized exams from the ACS Exams Institute. These exams are norm-referenced and allow chemistry departments to make comparisons between the performance of their own students relative to national samples; however, currently there appears to be no systematic means for noting students’ content knowledge growth over a four-year degree. The Exams Institute is undertaking the task of organizing content along an anchoring concept or “big ideas” framework to facilitate this type of analysis

    Monolithic Perovskite Silicon Tandem Solar Cells Fabricated Using Industrial p Type Polycrystalline Silicon on Oxide Passivated Emitter and Rear Cell Silicon Bottom Cell Technology

    Get PDF
    Combining a perovskite top cell with a conventional passivated emitter and rear cell PERC silicon bottom cell in a monolithically integrated tandem device is an economically attractive solution to boost the power conversion efficiency PCE of silicon single junction technology. Proof of concept perovskite silicon tandem solar cells using high temperature stable bottom cells featuring a polycrystalline silicon on oxide POLO front junction and a PERC type passivated rear side with local aluminum p contacts are reported. For this PERC POLO cell, a process flow that is compatible with industrial, mainstream PERC technology is implemented. Top and bottom cells are connected via a tin doped indium oxide recombination layer. The recombination layer formation on the POLO front junction of the bottom cell is optimized by postdeposition annealing and mitigation of sputter damage. The perovskite top cell is monolithically integrated in a p amp; 8722;i amp; 8722;n junction device architecture. Proof of concept tandem cells demonstrate a PCE of up to 21.3 . Based on the experimental findings and supporting optical simulations, major performance enhancements by process and layer optimization are identified and a PCE potential of 29.5 for these perovskite silicon tandem solar cells with PERC like bottom cell technology is estimate

    Large Scale Synthesis of Nanostructured Carbon Ti4O7 Hollow Particles as Efficient Sulfur Host Materials for Multilayer Lithium Sulfur Pouch Cells

    Get PDF
    Applications of advanced cathode materials with well designed chemical components and or optimized nanostructures promoting the sulfur redox kinetics and suppressing the shuttle effect of polysulfides are highly valued. However, in the case of actual lithium sulfur Li amp; 8722;S batteries under practical working conditions, one long term obstacle still exists, which is mainly due to the difficulties in massive synthesis of such nanomaterials with low cost and ease of control on the nanostructure. Herein, we develop a facile synthesis of carbon coated Ti4O7 hollow nanoparticles C amp; 8722;Ti4O7 using spherical polymer electrolyte brush as soft template, which is scalable via utilizing a minipilot reactor. The C amp; 8722;Ti4O7 hollow nanoparticles provide strong chemical adsorption to polysulfides through the large polar surface and additional physical confinement by rich micro amp; mesopores and have successfully been employed as an efficient sulfur host for multilayer pouch cells. Besides, the sluggish kinetics of the sulfur and lithium sulfide redox mechanism can be improved by the highly conductive Ti4O7 via catalyzation of the conversion of polysulfides. Consequently, the C amp; 8722;Ti4O7 based pouch cell endows a high discharge capacity of 1003 amp; 8197;mAh amp; 8201;g amp; 8722;1 at 0.05 amp; 8197;C, a high capacity retention of 83.7 amp; 8201; after 100 amp; 8197;cycles at 0.1 amp; 8197;C, and a high Coulombic efficiency of 97.5 amp; 8201; at the 100th cycle. This work proposes an effective approach to transfer the synthesis of hollow Ti4O7 nanoparticles from lab to large scale production, paving the way to explore a wide range of advanced nanomaterials for multilayer Li amp; 8722;S pouch cell

    Daam1a mediates asymmetric habenular morphogenesis by regulating dendritic and axonal outgrowth

    Get PDF
    Although progress has been made in resolving the genetic pathways that specify neuronal asymmetries in the brain, little is known about genes that mediate the development of structural asymmetries between neurons on left and right. In this study, we identify daam1a as an asymmetric component of the signalling pathways leading to asymmetric morphogenesis of the habenulae in zebrafish. Daam1a is a member of the Formin family of actin-binding proteins and the extent of Daam1a expression in habenular neuron dendrites mirrors the asymmetric growth of habenular neuropil between left and right. Local loss and gain of Daam1a function affects neither cell number nor subtype organisation but leads to a decrease or increase of neuropil, respectively. Daam1a therefore plays a key role in the asymmetric growth of habenular neuropil downstream of the pathways that specify asymmetric cellular domains in the habenulae. In addition, Daam1a mediates the development of habenular efferent connectivity as local loss and gain of Daam1a function impairs or enhances, respectively, the growth of habenular neuron terminals in the interpeduncular nucleus. Abrogation of Daam1a disrupts the growth of both dendritic and axonal processes and results in disorganised filamentous actin and α-tubulin. Our results indicate that Daam1a plays a key role in asymmetric habenular morphogenesis mediating the growth of dendritic and axonal processes in dorsal habenular neurons

    Ten Years of Pathway Analysis: Current Approaches and Outstanding Challenges

    Get PDF
    Pathway analysis has become the first choice for gaining insight into the underlying biology of differentially expressed genes and proteins, as it reduces complexity and has increased explanatory power. We discuss the evolution of knowledge base–driven pathway analysis over its first decade, distinctly divided into three generations. We also discuss the limitations that are specific to each generation, and how they are addressed by successive generations of methods. We identify a number of annotation challenges that must be addressed to enable development of the next generation of pathway analysis methods. Furthermore, we identify a number of methodological challenges that the next generation of methods must tackle to take advantage of the technological advances in genomics and proteomics in order to improve specificity, sensitivity, and relevance of pathway analysis

    Coastal Upwelling Supplies Oxygen-Depleted Water to the Columbia River Estuary

    Get PDF
    Low dissolved oxygen (DO) is a common feature of many estuarine and shallow-water environments, and is often attributed to anthropogenic nutrient enrichment from terrestrial-fluvial pathways. However, recent events in the U.S. Pacific Northwest have highlighted that wind-forced upwelling can cause naturally occurring low DO water to move onto the continental shelf, leading to mortalities of benthic fish and invertebrates. Coastal estuaries in the Pacific Northwest are strongly linked to ocean forcings, and here we report observations on the spatial and temporal patterns of oxygen concentration in the Columbia River estuary. Hydrographic measurements were made from transect (spatial survey) or anchor station (temporal survey) deployments over a variety of wind stresses and tidal states during the upwelling seasons of 2006 through 2008. During this period, biologically stressful levels of dissolved oxygen were observed to enter the Columbia River estuary from oceanic sources, with minimum values close to the hypoxic threshold of 2.0 mg L−1. Riverine water was consistently normoxic. Upwelling wind stress controlled the timing and magnitude of low DO events, while tidal-modulated estuarine circulation patterns influenced the spatial extent and duration of exposure to low DO water. Strong upwelling during neap tides produced the largest impact on the estuary. The observed oxygen concentrations likely had deleterious behavioral and physiological consequences for migrating juvenile salmon and benthic crabs. Based on a wind-forced supply mechanism, low DO events are probably common to the Columbia River and other regional estuaries and if conditions on the shelf deteriorate further, as observations and models predict, Pacific Northwest estuarine habitats could experience a decrease in environmental quality

    Quality control of B-lines analysis in stress Echo 2020

    Get PDF
    Background The effectiveness trial “Stress echo (SE) 2020” evaluates novel applications of SE in and beyond coronary artery disease. The core protocol also includes 4-site simplified scan of B-lines by lung ultrasound, useful to assess pulmonary congestion. Purpose To provide web-based upstream quality control and harmonization of B-lines reading criteria. Methods 60 readers (all previously accredited for regional wall motion, 53 B-lines naive) from 52 centers of 16 countries of SE 2020 network read a set of 20 lung ultrasound video-clips selected by the Pisa lab serving as reference standard, after taking an obligatory web-based learning 2-h module ( http://se2020.altervista.org ). Each test clip was scored for B-lines from 0 (black lung, A-lines, no B-lines) to 10 (white lung, coalescing B-lines). The diagnostic gold standard was the concordant assessment of two experienced readers of the Pisa lab. The answer of the reader was considered correct if concordant with reference standard reading ±1 (for instance, reference standard reading of 5 B-lines; correct answer 4, 5, or 6). The a priori determined pass threshold was 18/20 (≥ 90%) with R value (intra-class correlation coefficient) between reference standard and recruiting center) > 0.90. Inter-observer agreement was assessed with intra-class correlation coefficient statistics. Results All 60 readers were successfully accredited: 26 (43%) on first, 24 (40%) on second, and 10 (17%) on third attempt. The average diagnostic accuracy of the 60 accredited readers was 95%, with R value of 0.95 compared to reference standard reading. The 53 B-lines naive scored similarly to the 7 B-lines expert on first attempt (90 versus 95%, p = NS). Compared to the step-1 of quality control for regional wall motion abnormalities, the mean reading time per attempt was shorter (17 ± 3 vs 29 ± 12 min, p < .01), the first attempt success rate was higher (43 vs 28%, p < 0.01), and the drop-out of readers smaller (0 vs 28%, p < .01). Conclusions Web-based learning is highly effective for teaching and harmonizing B-lines reading. Echocardiographers without previous experience with B-lines learn quickly.info:eu-repo/semantics/publishedVersio
    corecore