7 research outputs found

    Loss of adipose triglyceride lipase is associated with human cancer and induces mouse pulmonary neoplasia

    Get PDF
    Metabolic reprogramming is a hallmark of cancer. Understanding cancer metabolism is instrumental to devise innovative therapeutic approaches. Anabolic metabolism, including the induction of lipogenic enzymes, is a key feature of proliferating cells. Here, we report a novel tumor suppressive function for adipose triglyceride lipase (ATGL), the rate limiting enzyme in the triglyceride hydrolysis cascade. In immunohistochemical analysis, non-small cell lung cancers, pancreatic adenocarcinoma as well as leiomyosarcoma showed significantly reduced levels of ATGL protein compared to corresponding normal tissues. The ATGL gene was frequently deleted in various forms of cancers. Low levels of ATGL mRNA correlated with significantly reduced survival in patients with ovarian, breast, gastric and non-small cell lung cancers. Remarkably, pulmonary neoplasia including invasive adenocarcinoma developed spontaneously in mice lacking ATGL pointing to an important role for this lipase in controlling tumor development. Loss of ATGL, as detected in several forms of human cancer, induces spontaneous development of pulmonary neoplasia in a mouse model. Our results, therefore, suggest a novel tumor suppressor function for ATGL and contribute to the understanding of cancer metabolism. We propose to evaluate loss of ATGL protein expression for the diagnosis of malignant tumors. Finally, modulation of the lipolytic pathway may represent a novel therapeutic approach in the treatment of human cancer

    Lipid modulation of skeletal muscle mass and function

    Get PDF
    Loss of skeletal muscle mass is a characteristic feature of various pathologies including cancer, diabetes, and obesity, as well as being a general feature of ageing. However, the processes underlying its pathogenesis are not fully understood and may involve multiple factors. Importantly, there is growing evidence which supports a role for fatty acids and their derived lipid intermediates in the regulation of skeletal muscle mass and function. In this review, we discuss evidence pertaining to those pathways which are involved in the reduction, increase and/or preservation of skeletal muscle mass by such lipids under various pathological conditions, and highlight studies investigating how these processes may be influenced by dietary supplementation as well as genetic and/or pharmacological intervention

    Can subretinal microphotodiodes successfully replace degenerated photoreceptors?

    Get PDF
    The idea of implanting microphotodiode arrays as visual prostheses has aroused controversy on its feasibility from the moment it appeared in print. We now present results which basically support the concept of replacing damaged photoreceptors with subretinally implanted stimulation devices. Network activity in degenerated rat retinae could be modulated through local electrical stimulation in vitro. We also investigated the long term stability and biocompatibility of the subretinal implants and their impact on retinal physiology in rats. Ganzfeld electroretinograms and histology showed no significant side effect of subretinal implants on retinal function or the architecture of the inner retina

    The dynamic roles of intracellular lipid droplets: from archaea to mammals

    No full text
    corecore