50 research outputs found

    The La Silla - QUEST Kuiper Belt Survey

    Full text link
    We describe the instrumentation and detection software and characterize the detection efficiency of an automated, all-sky, southern-hemisphere search for Kuiper Belt objects brighter than R mag 21.4. The search relies on Yale University's 160-Megapixel QUEST camera, previously used for successful surveys at Palomar that detected most of the distant dwarf planets, and now installed on the ESO 1.0-m Schmidt telescope at La Silla, Chile. Extensive upgrades were made to the telescope control system to support automation, and significant improvements were made to the camera. To date, 63 new KBOs have been discovered, including a new member of the Haumea collision family (2009 YE7) and a new distant object with inclination exceeding 70 deg (2010 WG9). In a survey covering ~7500 deg2, we have thus far detected 77 KBOs and Centaurs, more than any other full-hemisphere search to date. Using a pattern of dithered pointings, we demonstrate a search efficiency exceeding 80%. We are currently on track to complete the southern-sky survey and detect any bright KBOs that have eluded detection from the north.Comment: 20 pages, 2 tables, 7 figure

    The Peculiar Photometric Properties of 2010 WG9: A Slowly-Rotating Trans-Neptunian Object from the Oort Cloud

    Full text link
    We present long-term BVRI observations of 2010 WG9, an ~100-km diameter trans-Neptunian object (TNO) with an extremely high inclination of 70 deg discovered by the La Silla - QUEST southern sky survey. Most of the observations were obtained with ANDICAM on the SMARTS 1.3m at Cerro Tololo, Chile from Dec 2010 to Nov 2012. Additional observations were made with EFOSC2 on the 3.5-m NTT telescope of the European Southern Observatory at La Silla, Chile in Feb 2011. The observations reveal a sinusoidal light curve with amplitude 0.14 mag and period 5.4955 +/- 0.0025d, which is likely half the true rotation period. Such long rotation periods have previously been observed only for tidally-evolved binary TNOs, suggesting that 2010 WG9 may be such a system. We predict a nominal separation of at least 790 km, resolvable with HST and ground-based systems. We measure B-R = 1.318 +/- 0.029 and V-R = 0.520 +/- 0.018, consistent with the colors of modestly red Centaurs and Damocloids. At I-band wavelengths, we observe an unusually large variation of color with rotational phase, with R-I ranging from 0.394 +/- 0.025 to 0.571 +/- 0.044. We also measure an absolute R-band absolute magnitude of 7.93 +/- 0.05 and solar phase coefficient 0.049 +/- 0.019 mag/deg.Comment: 17 pages, 5 figure

    Ground-based astrometry with wide field imagers. V. Application to near-infrared detectors: HAWK-I@VLT/ESO

    Full text link
    High-precision astrometry requires accurate point-spread function modeling and accurate geometric-distortion corrections. This paper demonstrates that it is possible to achieve both requirements with data collected at the high acuity wide-field K-band imager (HAWK-I), a wide-field imager installed at the Nasmyth focus of UT4/VLT ESO 8m telescope. Our final astrometric precision reaches ~3 mas per coordinate for a well-exposed star in a single image with a systematic error less than 0.1 mas. We constructed calibrated astro-photometric catalogs and atlases of seven fields: the Baade's Window, NGC 6656, NGC 6121, NGC 6822, NGC 6388, NGC 104, and the James Webb Space Telescope calibration field in the Large Magellanic Cloud. We make these catalogs and images electronically available to the community. Furthermore, as a demonstration of the efficacy of our approach, we combined archival material taken with the optical wide-field imager at the MPI/ESO 2.2m with HAWK-I observations. We showed that we are able to achieve an excellent separation between cluster members and field objects for NGC 6656 and NGC 6121 with a time base-line of about 8 years. Using both HST and HAWK-I data, we also study the radial distribution of the SGB populations in NGC 6656 and conclude that the radial trend is flat within our uncertainty. We also provide membership probabilities for most of the stars in NGC 6656 and NGC 6121 catalogs and estimate membership for the published variable stars in these two fields.Comment: 36 pages (included appendix), 13 tables, 35 figures (26 in low resolution), accepted for publication in Astronomy and Astrophysics. Online materials will be soon available on CDS. Meanwhile, online materials can be requested directly to the first autho

    Massive stars exploding in a He-rich circumstellar medium. VI. Observations of two distant Type Ibn supernova candidates discovered by La Silla-QUEST

    Get PDF
    We present optical observations of the peculiar stripped-envelope supernovae (SNe) LSQ12btw and LSQ13ccw discovered by the La Silla-QUEST survey. LSQ12btw reaches an absolute peak magnitude of M(g) = -19.3 +- 0.2, and shows an asymmetric light curve. Stringent prediscovery limits constrain its rise time to maximum light to less than 4 days, with a slower post-peak luminosity decline, similar to that experienced by the prototypical SN~Ibn 2006jc. LSQ13ccw is somewhat different: while it also exhibits a very fast rise to maximum, it reaches a fainter absolute peak magnitude (M(g) = -18.4 +- 0.2), and experiences an extremely rapid post-peak decline similar to that observed in the peculiar SN~Ib 2002bj. A stringent prediscovery limit and an early marginal detection of LSQ13ccw allow us to determine the explosion time with an uncertainty of 1 day. The spectra of LSQ12btw show the typical narrow He~I emission lines characterising Type Ibn SNe, suggesting that the SN ejecta are interacting with He-rich circumstellar material. The He I lines in the spectra of LSQ13ccw exhibit weak narrow emissions superposed on broad components. An unresolved Halpha line is also detected, suggesting a tentative Type Ibn/IIn classification. As for other SNe~Ibn, we argue that LSQ12btw and LSQ13ccw likely result from the explosions of Wolf-Rayet stars that experienced instability phases prior to core collapse. We inspect the host galaxies of SNe Ibn, and we show that all of them but one are hosted in spiral galaxies, likely in environments spanning a wide metallicity range.Comment: 15 pages, 9 figures, 4 tables. Accepted by MNRA

    Early ultraviolet emission in the Type Ia supernova LSQ12gdj: No evidence for ongoing shock interaction

    Get PDF
    We present photospheric-phase observations of LSQ12gdj, a slowly-declining, UV-bright Type Ia supernova. Classified well before maximum light, LSQ12gdj has extinction-corrected absolute magnitude MB=19.8M_B = -19.8, and pre-maximum spectroscopic evolution similar to SN 1991T and the super-Chandrasekhar-mass SN 2007if. We use ultraviolet photometry from Swift, ground-based optical photometry, and corrections from a near-infrared photometric template to construct the bolometric (1600-23800 \AA) light curve out to 45 days past BB-band maximum light. We estimate that LSQ12gdj produced 0.96±0.070.96 \pm 0.07 MM_\odot of 56^{56}Ni, with an ejected mass near or slightly above the Chandrasekhar mass. As much as 27% of the flux at the earliest observed phases, and 17% at maximum light, is emitted bluewards of 3300 \AA. The absence of excess luminosity at late times, the cutoff of the spectral energy distribution bluewards of 3000 \AA, and the absence of narrow line emission and strong Na I D absorption all argue against a significant contribution from ongoing shock interaction. However, up to 10% of LSQ12gdj's luminosity near maximum light could be produced by the release of trapped radiation, including kinetic energy thermalized during a brief interaction with a compact, hydrogen-poor envelope (radius <1013< 10^{13} cm) shortly after explosion; such an envelope arises generically in double-degenerate merger scenarios.Comment: 18 pages, 10 figures, accepted to MNRAS; v2 accepted version. Spectra available on WISEReP (http://www.weizmann.ac.il/astrophysics/wiserep/). Natural-system photometry and bolometric light curve available as online tables in MNRAS versio

    Carnegie Supernova Project-II: Extending the Near-Infrared Hubble Diagram for Type Ia Supernovae to z0.1z\sim0.1

    Full text link
    The Carnegie Supernova Project-II (CSP-II) was an NSF-funded, four-year program to obtain optical and near-infrared observations of a "Cosmology" sample of 100\sim100 Type Ia supernovae located in the smooth Hubble flow (0.03z0.100.03 \lesssim z \lesssim 0.10). Light curves were also obtained of a "Physics" sample composed of 90 nearby Type Ia supernovae at z0.04z \leq 0.04 selected for near-infrared spectroscopic time-series observations. The primary emphasis of the CSP-II is to use the combination of optical and near-infrared photometry to achieve a distance precision of better than 5%. In this paper, details of the supernova sample, the observational strategy, and the characteristics of the photometric data are provided. In a companion paper, the near-infrared spectroscopy component of the project is presented.Comment: 43 pages, 10 figures, accepted for publication in PAS

    A Spectroscopic Study of Type Ibc Supernova Host Galaxies from Untargeted Surveys

    Full text link
    We present the largest spectroscopic study of the host environments of Type Ibc supernovae (SN Ibc) discovered exclusively by untargeted SN searches. Past studies of SN Ibc host environments have been biased towards high-mass, high-metallicity galaxies by focusing on SNe discovered in galaxy-targeted SN searches. Our new observations more than double the total number of spectroscopic stellar population age and metallicity measurements published for untargeted SN Ibc host environments, and extend to a median redshift about twice as large as previous statistical studies (z = 0.04). For the 12 SNe Ib and 21 SNe Ic in our metallicity sample, we find median metallicities of log(O/H)+12 = 8.48 and 8.61, respectively, but determine that the discrepancy in the full distribution of metallicities is not statistically significant. This median difference would correspond to only a small difference in the mass loss via metal-line driven winds (<30%), suggesting this does not play the dominant role in distinguishing SN Ib and Ic progenitors. However, the median metallicity of the 7 broad-lined SN Ic (SN Ic-BL) in our sample is significantly lower, log(O/H)+12 = 8.34. The age of the young stellar population of SN Ic-BL host environments also seems to be lower than for SN Ib and Ic, but our age sample is small. A synthesis of SN Ibc host environment spectroscopy to date does not reveal a significant difference in SN Ib and Ic metallicities, but reinforces the significance of the lower metallicities for SN Ic-BL. This combined sample demonstrates that galaxy-targeted SN searches introduce a significant bias for studies seeking to infer the metallicity distribution of SN progenitors, and we identify and discuss other systematic effects that play smaller roles. We discuss the path forward for making progress on SN Ibc progenitor studies in the LSST era.Comment: 27 pages, 12 Figures, V2 as accepted by ApJ, more information at http://www.cfa.harvard.edu/~nsanders/papers/Ibchosts/summary.htm

    Superluminous supernovae from PESSTO

    Get PDF
    We present optical spectra and light curves for three hydrogen-poor superluminous supernovae followed by the Public ESO Spectroscopic Survey of Transient Objects (PESSTO). Time series spectroscopy from a fewdays aftermaximum light to 100 d later shows them to be fairly typical of this class, with spectra dominated by Ca II, MgII, FeII, and Si II, which evolve slowly over most of the post-peak photospheric phase. We determine bolometric light curves and apply simple fitting tools, based on the diffusion of energy input by magnetar spin-down, Ni-56 decay, and collision of the ejecta with an opaque circumstellar shell. We investigate how the heterogeneous light curves of our sample (combined with others from the literature) can help to constrain the possible mechanisms behind these events. We have followed these events to beyond 100-200 d after peak, to disentangle host galaxy light from fading supernova flux and to differentiate between the models, which predict diverse behaviour at this phase. Models powered by radioactivity require unrealistic parameters to reproduce the observed light curves, as found by previous studies. Both magnetar heating and circumstellar interaction still appear to be viable candidates. A large diversity is emerging in observed tail-phase luminosities, with magnetar models failing in some cases to predict the rapid drop in flux. This would suggest either that magnetars are not responsible, or that the X-ray flux from the magnetar wind is not fully trapped. The light curve of one object shows a distinct rebrightening at around 100 d after maximum light. We argue that this could result either from multiple shells of circumstellar material, or from a magnetar ionization front breaking out of the ejecta.</p
    corecore