75 research outputs found

    A Survey of Parallel Message Authentication and Hashing Methods

    Get PDF
    مقدمة: الإنترنت، وتبادل المعلومات، والتواصل الاجتماعي، وغيرها من الأنشطة التي ازدادت بشكل كبير في السنوات الأخيرة. لذلك، يتطلب الأمر زيادة السرية والخصوصية. في الأيام الأخيرة، كان الاحتيال عبر الإنترنت واحدًا من العوائق الرئيسية لنشر استخدام تطبيقات الأعمال. وبالتالي، تحدث الثلاث مخاوف الأمنية الهامة بشكل يومي في عالم الأزياء الشفافة لدينا، وهي: الهوية، والمصادقة، والترخيص. التعرف هو إجراء يسمح بتحديد هوية كيان ما، والذي يمكن أن يكون شخصًا أو جهاز كمبيوتر أو أصل آخر مثل مبرمج برامج. طرق العمل: في أنظمة الأمان، المصادقة والترخيص هما إجراءان مكملان لتحديد من يمكنه الوصول إلى موارد المعلومات عبر الشبكة. تم تقديم العديد من الحلول في الأدبيات. وللحصول على أداء أفضل في خوارزميات المصادقة، استخدم الباحثون التوازي لزيادة الإنتاجية لخوارزمياتهم. من جهة، تم استخدام مجموعة من الطرق لزيادة مستوى الأمان في الأنظمة التشفيرية، بما في ذلك زيادة عدد الجولات، واستخدام جداول الاستبدال ودمج آليات الأمان الأخرى لتشفير الرسائل والمصادقة عليها. النتائج: أظهرت الدراسات الحديثة حول مصادقة الرسائل المتوازية وخوارزميات التجزئة أن وحدات معالجة الرسومات تتفوق في الأداء على الأنظمة الأساسية المتوازية الأخرى من حيث الأداء. الاستنتاجات: يقدم هذا العمل تنفيذًا متوازيًا لتقنيات مصادقة الرسائل على العديد من الأنظمة الأساسية. تدرس وتعرض الأعمال التي تناقش المصادقة والتجزئة وتنفيذها على منصة موازية كهدف رئيسي.Background: Currently, there are approximately 4.95 billion people who use the Internet. This massive audience desires internet shopping, information exchange, social networking, and other activities that have grown dramatically in recent years. Therefore, it creates the need for greater confidentiality and privacy. In recent days, fraud via the Internet has been one of the key impediments to the dissemination of the use of business apps. Therefore, the three important security concerns actually occur daily in our world of transparent fashion, more accurately: identity, authentication, and authorization. Identification is a procedure that permits the recognition of an entity, which may be a person, a computer, or another asset such as a software programmer. Materials and Methods: In security systems, authentication and authorization are two complementary procedures for deciding who may access the information resources across a network. Many solutions have been presented in the literature. To get more performance on the authentication algorithmic, researchers used parallelism to increase the throughput of their algorithms.  On the one hand, various approaches have been employed to enhance the security of cryptographic systems, including increasing the number of rounds, utilizing substitution tables, and integrating other security primitives for encryption and message authentication. Results: Recent studies on parallel message authentication and hashing algorithms have demonstrated that GPUs outperform other parallel platforms in terms of performance. Conclusion: This work presents a parallel implementation of message authentication techniques on several platforms. It is studying and demonstrating works which discuss authentication, hashing, and their implementation on a parallel platform as a main objective

    Spectrophotometric Determination of Cu(II) in Analytical Sample Using a New Chromogenic Reagent (HPEDN)

    Get PDF
    The sensitive, accurate and rapid spectrophotometric method that can be used for determination of Cu(II) in the analytical samples using a new chromogenic reagent azo-Schiff base 1-((4-(1-(2-hydroxyphenylimino)ethyl)-phenyl)diazenyl) naphthalene-2-ol (HPEDN). The synthesized new (azo-Schiff base) ligand was complexed with copper(II) and characterized using UV/Vis spectroscopy, IR spectra, 1H-NMR, 13CN-MR spectra, Molar electrical connectivity, and measuring of their melting points. Then obtained complex showed a brown color with maximum absorption at λmax = 500 nm at pH = 9. Beer’s law is obeyed in the concentration in the range of 1.7 to 5.4 μg/mL. The molar absorption and Sandell’s sensitivity values of Cu(II) complex were found to be 0.5038 × 104 L mol–1 cm–1 and 0.0039 μg cm–2, respectively. Structure of the prepared complex was investigated by using the continuous variation, mole ratio method and slope analysis method. The obtained results showed that the complex has (1:2) (M:L) molar ratio and these results showed that this method were more sensitive, more precise and accuracy through the calculation of (Re, Erel, R.S.D)%. The most important interferences were due to, Co2+, Cd2+, Zn2+, Ni2+, Mn2+, Pd2+, Fe3+ and these were studied, and suitable masking agents were used. This method was applied for the determination of Cu(II) in alloy. The obtained results were compared with flame atomic absorption spectrometry method and these results were in a good agreement in these two cases

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Effects of Ni - Doping on the Characterization of Nanostructured CdS Thin Films

    Get PDF
    Effect of nickel doping was investigated on doped CdS films by spray pyrolysis technique and examined by XRD, AFM, and UV-VIS spectroscopy. The increasing of Ni doping ratio improve (020) preferential orientation. XRD analysis confirmed the CdS nanostructure for all samples. The crystallite size for pure CdS showed an increase from 19.98 nm to 27.04 nm on doping, whereas the strain (%) parameter was decreased from 25.0 to 13.3. AFM images offer a decrease in roughness from 6.5 nm to 3.48 nm with Ni – 4% content. Transmittance was exceeding 70% in the visible range by Ni content. Also, the bandgap was decreased from 2.4 to 2.3 eV with the increment of Ni content

    Sensitivity of Nanostructured Mn-Doped Cobalt Oxide Films for Gas Sensor Application

    No full text
    The effect of manganese doped cobalt oxide (Co3O4:Mn) was investigated by two different ratios (1% and 3%), which were precipitated by spray pyrolysis technique (SPT), and was adopted using a laboratory designed glass atomizer. Glass substrates were used to deposit films on them, heated at a temperature of 420 ℃. The structural properties were studied through X-ray diffraction. The results showed that all deposit nanostructured films were polycrystalline and there was a decrease in the preferred reflection intensity along (311) plane resulting in a decrease in the crystallite size. Surface properties were analyzed through atomic force microscopy (AFM), which showed a decrease in the roughness and the particle size growth was a vertical columnar rod. The optical characterization displayed that the transmittance of pure Co3O4 nanostructured films was 48% and decreased to 35% for 1% of the Mn concentration, and continued to decrease to 33% with the increase of manganese concentration up to 3%. Optical energy bandgap of pure Co3O4 nanostructured films was 1.435 eV and decreased to 1.419 eV for 1% of Mn concentration, and continued to decrease to 1.367 eV with the increase of Mn concentration up to 3%. The highest percentage sensitivity was for the sample doped with 3% Mn, which was about 65%, for NO2 gas concentration of 600 ppm, at an operating temperature of 200 ℃
    corecore