249 research outputs found

    Event-to-seasonal sediment dispersal on the Waipaoa River Shelf, New Zealand: A numerical modeling study

    Get PDF
    The formation of the geologic record offshore of small mountainous rivers is event-driven and, more so than many other environments, can result in relatively complete sequences. One such river, the Waipaoa in New Zealand, has been studied from its terrestrial source to its oceanic sink over timescales spanning storms, seasons, and the Holocene. This study focused on the formation of riverine deposits on the Waipaoa Shelf during episodic flood and wave events, contrasting deposition during short-lived events to accumulation patterns created over thirteen months. Sediment fluxes and fate were estimated using the numerical hydrodynamic and sediment transport model ROMS, the Regional Ocean Modeling System, using CSTMS, the Community Sediment Transport Modeling System. During the study period (January 2010-February 2011), the model indicated that initial flood deposition generally occurred near the river mouth and along the coast in water shallower than 40 m, and that deposition during any one event was sensitive to variations in shelf currents and wave energy. Also, the sedimentation due to plume settling and suspended transport during these relatively short flood and wave events were not aligned with longer time-scale accumulation patterns (months or greater) previously reported for the Waipaoa shelf. In the days to months following a flood pulse, waves episodically reworked this initial deposit, resuspending centimeter-scale layers of sediment during energetic periods. Frequent and intense resuspension occurred in shallow areas where bed stresses were high. This encouraged redistribution of material toward deeper areas having lower near-bed wave stresses, including continental shelf depocenters and offshore areas. While fast settling material was preferentially retained near the river mouth, currents dispersed slower settling sediment farther before deposition. Overall, accumulation depended on characteristics of oceanographic transport (wave energy, current velocities), not just source characteristics (flood size, sediment size distribution). (C) 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.orgilicensesiby-nc-nd/4.0/)

    Full-Genome Sequence of Thalassotalea euphylliae H1, Isolated from a Montipora capitata Coral Located in Hawai’i

    Full text link
    Copyright © 2018 Summers et al. The isolate of Thalassotalea euphylliae H1 was collected from the surface of a Montipora capitata coral. The genome was assembled using long reads from a Nanopore MinION sequencer for scaffolding and complemented with short-read MiSeq sequences. The genome was approximately 4.77 Mb long with 4,020 protein-coding genes, 92 tRNAs, and 22 rRNAs

    Complete genome sequence of thalassotalea euphylliae Strain H2

    Full text link
    Copyright © 2019 Summers et al. A bacterial isolate of Thalassotalea euphylliae H2 was collected from the coral Montipora capitata. MinION long reads were employed for scaffolding and complemented with short-read MiSeq sequences to permit complete genome assembly. The genome is approximately 4.36 Mb long, with 3,669 protein-coding genes, 92 tRNAs, and 21 rRNAs

    New approaches to measuring anthelminthic drug efficacy: parasitological responses of childhood schistosome infections to treatment with praziquantel

    Get PDF
    By 2020, the global health community aims to control and eliminate human helminthiases, including schistosomiasis in selected African countries, principally by preventive chemotherapy (PCT) through mass drug administration (MDA) of anthelminthics. Quantitative monitoring of anthelminthic responses is crucial for promptly detecting changes in efficacy, potentially indicative of emerging drug resistance. Statistical models offer a powerful means to delineate and compare efficacy among individuals, among groups of individuals and among populations.; We illustrate a variety of statistical frameworks that offer different levels of inference by analysing data from nine previous studies on egg counts collected from African children before and after administration of praziquantel.; We quantify responses to praziquantel as egg reduction rates (ERRs), using different frameworks to estimate ERRs among population strata, as average responses, and within strata, as individual responses. We compare our model-based average ERRs to corresponding model-free estimates, using as reference the World Health Organization (WHO) 90 % threshold of optimal efficacy. We estimate distributions of individual responses and summarize the variation among these responses as the fraction of ERRs falling below the WHO threshold.; Generic models for evaluating responses to anthelminthics deepen our understanding of variation among populations, sub-populations and individuals. We discuss the future application of statistical modelling approaches for monitoring and evaluation of PCT programmes targeting human helminthiases in the context of the WHO 2020 control and elimination goals

    Insights into Minor Group Rhinovirus Uncoating: The X-ray Structure of the HRV2 Empty Capsid

    Get PDF
    Upon attachment to their respective receptor, human rhinoviruses (HRVs) are internalized into the host cell via different pathways but undergo similar structural changes. This ultimately results in the delivery of the viral RNA into the cytoplasm for replication. To improve our understanding of the conformational modifications associated with the release of the viral genome, we have determined the X-ray structure at 3.0 Å resolution of the end-stage of HRV2 uncoating, the empty capsid. The structure shows important conformational changes in the capsid protomer. In particular, a hinge movement around the hydrophobic pocket of VP1 allows a coordinated shift of VP2 and VP3. This overall displacement forces a reorganization of the inter-protomer interfaces, resulting in a particle expansion and in the opening of new channels in the capsid core. These new breaches in the capsid, opening one at the base of the canyon and the second at the particle two-fold axes, might act as gates for the externalization of the VP1 N-terminus and the extrusion of the viral RNA, respectively. The structural comparison between native and empty HRV2 particles unveils a number of pH-sensitive amino acid residues, conserved in rhinoviruses, which participate in the structural rearrangements involved in the uncoating process

    Host Phylogeny Determines Viral Persistence and Replication in Novel Hosts

    Get PDF
    Pathogens switching to new hosts can result in the emergence of new infectious diseases, and determining which species are likely to be sources of such host shifts is essential to understanding disease threats to both humans and wildlife. However, the factors that determine whether a pathogen can infect a novel host are poorly understood. We have examined the ability of three host-specific RNA-viruses (Drosophila sigma viruses from the family Rhabdoviridae) to persist and replicate in 51 different species of Drosophilidae. Using a novel analytical approach we found that the host phylogeny could explain most of the variation in viral replication and persistence between different host species. This effect is partly driven by viruses reaching a higher titre in those novel hosts most closely related to the original host. However, there is also a strong effect of host phylogeny that is independent of the distance from the original host, with viral titres being similar in groups of related hosts. Most of this effect could be explained by variation in general susceptibility to all three sigma viruses, as there is a strong phylogenetic correlation in the titres of the three viruses. These results suggest that the source of new emerging diseases may often be predictable from the host phylogeny, but that the effect may be more complex than simply causing most host shifts to occur between closely related hosts

    Recruitment in the sea: bacterial genes required for inducing larval settlement in a polychaete worm

    Get PDF
    Metamorphically competent larvae of the marine tubeworm Hydroides elegans can be induced to metamorphose by biofilms of the bacterium Pseudoalteromonas luteoviolacea strain HI1. Mutational analysis was used to identify four genes that are necessary for metamorphic induction and encode functions that may be related to cell adhesion and bacterial secretion systems. No major differences in biofilm characteristics, such as biofilm cell density, thickness, biomass and EPS biomass, were seen between biofilms composed of P. luteoviolacea (HI1) and mutants lacking one of the four genes. The analysis indicates that factors other than those relating to physical characteristics of biofilms are critical to the inductive capacity of P. luteoviolacea (HI1), and that essential inductive molecular components are missing in the non-inductive deletion-mutant strains

    Invasive Predators Deplete Genetic Diversity of Island Lizards

    Get PDF
    Invasive species can dramatically impact natural populations, especially those living on islands. Though numerous examples illustrate the ecological impact of invasive predators, no study has examined the genetic consequences for native populations subject to invasion. Here we capitalize on a natural experiment in which a long-term study of the brown anole lizard (Anolis sagrei) was interrupted by rat invasion. An island population that was devastated by rats recovered numerically following rat extermination. However, population genetic analyses at six microsatellite loci suggested a possible loss of genetic diversity due to invasion when compared to an uninvaded island studied over the same time frame. Our results provide partial support for the hypothesis that invasive predators can impact the genetic diversity of resident island populations

    The Enterovirus 71 A-particle Forms a Gateway to Allow Genome Release: A CryoEM Study of Picornavirus Uncoating

    Get PDF
    Since its discovery in 1969, enterovirus 71 (EV71) has emerged as a serious worldwide health threat. This human pathogen of the picornavirus family causes hand, foot, and mouth disease, and also has the capacity to invade the central nervous system to cause severe disease and death. Upon binding to a host receptor on the cell surface, the virus begins a two-step uncoating process, first forming an expanded, altered "A-particle", which is primed for genome release. In a second step after endocytosis, an unknown trigger leads to RNA expulsion, generating an intact, empty capsid. Cryo-electron microscopy reconstructions of these two capsid states provide insight into the mechanics of genome release. The EV71 A-particle capsid interacts with the genome near the icosahedral two-fold axis of symmetry, which opens to the external environment via a channel ~10 Å in diameter that is lined with patches of negatively charged residues. After the EV71 genome has been released, the two-fold channel shrinks, though the overall capsid dimensions are conserved. These structural characteristics identify the two-fold channel as the site where a gateway forms and regulates the process of genome release. © 2013 Shingler et al

    Living with the Past: Nutritional Stress in Juvenile Males Has Immediate Effects on their Plumage Ornaments and on Adult Attractiveness in Zebra Finches

    Get PDF
    The environmental conditions individuals experience during early development are well known to have fundamental effects on a variety of fitness-relevant traits. Although it is evident that the earliest developmental stages have large effects on fitness, other developmental stages, such as the period when secondary sexual characters develop, might also exert a profound effect on fitness components. Here we show experimentally in male zebra finches, Taeniopygia guttata, that nutritional conditions during this later period have immediate effects on male plumage ornaments and on their attractiveness as adults. Males that had received high quality food during the second month of life, a period when secondary sexual characteristics develop, were significantly more attractive as adults in mate choice tests than siblings supplied with standard food during this period. Preferred males that had experienced better nutritional conditions had larger orange cheek patches when nutritional treatments ended than did unpreferred males. Sexual plumage ornaments of young males thus are honest indicators of nutritional conditions during this period. The mate choice tests with adult birds indicate that nutritional conditions during the period of song learning, brain and gonad development, and moult into adult plumage have persisting effects on male attractiveness. This suggests that the developmental period following nutritional dependence from the parents is just as important in affecting adult attractiveness as are much earlier developmental periods. These findings thus contribute to understanding the origin and consequences of environmentally determined fitness components
    corecore