358 research outputs found

    A 2-step synthesis of Combretastatin A-4 and derivatives as potent tubulin assembly inhibitors

    Get PDF
    A series of combretastatin derivatives were designed and synthesised by a two-step stereoselective synthesis by use of Wittig olefination followed by Suzuki cross-coupling. Interestingly, all new compounds (2a-2i) showed potent cell-based antiproliferative activities in nanomolar concentrations. Among the compounds, 2a, 2b and 2e were the most active across three cancer cell lines. In addition, these compounds inhibited the polymerisation of tubulin in vitro more efficiently than CA-4. They caused cell cycle arrest in G2/M phase further confirming their ability to inhibit tubulin polymerisation

    Expanding the scope of the Babler-Daubin oxidation : 1,3-oxidative transposition of secondary allylic alcohols

    Get PDF
    We report the catalytic chromium-mediated oxidation of secondary allylic alcohols to give α,β-unsaturated aldehydes with exclusive (E)-stereoselectivity. This facile procedure employs catalytic PCC (5 mol%) and periodic acid (H5IO6) as a co-oxidant. This transformation occurs specifically with aromatic substituted allyl alcohols containing both electron withdrawing and electron donating substituents as well as a range of functional groups

    Syntheses of Combretastatin A‐4 and Related Stilbenes by Using Aqueous Conditions

    Get PDF
    Combretastatin A-4 (CA4) is a potent anti-mitotic and vascular disrupting agent. Organic chemists have been working to optimize the synthesis of CA4 for the past 3 decades, with methods requiring hazardous solvents and harsh reaction conditions. Here, we report the synthesis of CA4 and a variety of stilbenes in an aqueous Wittig system. Potassium carbonate or lithium hydroxide were used as base in this Wittig reaction to give excellent yields of mixtures of E- and Z-stilbenes. The synthesis of CA4 was achieved using tetrahydropyran (THP) or silyl protected phenolic aldehydes. The THP groups were removed using dilute acid whilst the silyl groups fortuitously fell off during work up

    Time-resolved nanosecond fluorescence lifetime imaging and picosecond infrared spectroscopy of combretastatin A-4 in solution and in cellular systems

    Get PDF
    Fluorescence lifetime images of intrinsic fluorescence obtained with two-photon excitation at 630 nm are shown following uptake of a series of E-combretastatins into live cells, including human umbilical vein endothelial cells (HUVECs) that are the target for the anticancer activity of combretastatins. Images show distribution of the compounds within the cell cytoplasm and in structures identified as lipid droplets by comparison with images obtained following Nile red staining of the same cells. The intracellular fluorescent lifetimes are generally longer than in fluid solution as a consequence of the high viscosity of the cellular environment. Following incubation the intracellular concentrations of a fluorinated derivative of E combretastatin A4 in HUVECs are up to between 2 and 3 orders of magnitude higher than the concentration in the surrounding medium. Evidence is presented to indicate that at moderate laser powers (up to 6 mW) it is possible to isomerize up to 25% of the combretastatin within the femtolitre focal volume of the femtosecond laser beam. This suggests that it may be possible to activate the E-combretastatin (with low cellular toxicity) to the Z-isomer with high anticancer drug activity using two-photon irradiation. The isomerization of Z- and E-combretastatins by 266 nm irradiation has been probed by ultrafast time-resolved infrared spectroscopy. Results for the E-isomer show a rapid loss of excess vibrational energy in the excited state with a lifetime of 7 ps, followed by a slower process with a lifetime of 500 ps corresponding to the return to the ground state as also determined from the fluorescence lifetime. In contrast the Z-isomer, whilst also appearing to undergo a rapid cooling of the initial excited state, has a much shorter overall excited state lifetime of 14 ps

    Three-dimensional imaging and uptake of the anticancer drug combretastatin in cell spheroids and photoisomerization in gels with multiphoton excitation

    Get PDF
    The uptake of E-combretastatins, potential pro-drugs of the anticancer Z-isomers, into multicellular spheroids has been imaged by intrinsic fluorescence in three dimensions using two-photon excited fluorescence lifetime imaging with 625 nm ultrafast femtosecond laser pulses. Uptake is initially observed at the spheroid periphery but extends to the spheroid core within 30 minutes. Using agarose gels as a three-dimensional model, the conversion of Z(trans) E(cis) via two-photon photoisomerization is demonstrated and the location of this photochemical process may be selected precisely within the micron scale in all three dimensions at depths up to almost 2 mm. We discuss these results for enhanced tissue penetration at longer near-infrared wavelengths for cancer therapy and up to three-photon excitation and imaging using 930 nm laser pulses with suitable combretastatin analogues

    Facile synthesis and biological evaluation of chrysin derivatives

    Get PDF
    In this paper, novel synthetic methods, including microwave O-alkylation, were used to produce several chrysin derivatives. These compounds were purified, characterised and tested on different cell lines and bacterial strains. From this family, 7-(2,4-dinitrophenoxy)-5-hydroxy-3-phenyl-4H-chromen-4-one (C3) was shown to be extremely active on bacterial strains methicillin-resistant Staphylococcus aureus, Pseudomonas aeruginosa and Klebsiella pneumoniae as well as having anticancer activity on a range of cancer cell lines with IC50 values less than 30 µM. Chrysin has been known for their anticancer and antimicrobial properties, and this study not only corroborates this but also shows that it is possible to synthesise new improved derivatives with therapeutic possibilities

    Rapid detection of SMARCB1 sequence variation using high resolution melting

    Get PDF
    Background : Rhabdoid tumors are rare cancers of early childhood arising in the kidney, central nervous system and other organs. The majority are caused by somatic inactivating mutations or deletions affecting the tumor suppressor locus SMARCB1 [OMIM 601607]. Germ-line SMARCB1 inactivation has been reported in association with rhabdoid tumor, epitheloid sarcoma and familial schwannomatosis, underscoring the importance of accurate mutation screening to ascertain recurrence and transmission risks. We describe a rapid and sensitive diagnostic screening method, using high resolution melting (HRM), for detecting sequence variations in SMARCB1. Methods : Amplicons, encompassing the nine coding exons of SMARCB1, flanking splice site sequences and the 5\u27 and 3\u27 UTR, were screened by both HRM and direct DNA sequencing to establish the reliability of HRM as a primary mutation screening tool. Reaction conditions were optimized with commercially available HRM mixes. Results : The false negative rate for detecting sequence variants by HRM in our sample series was zero. Nine amplicons out of a total of 140 (6.4%) showed variant melt profiles that were subsequently shown to be false positive. Overall nine distinct pathogenic SMARCB1 mutations were identified in a total of 19 possible rhabdoid tumors. Two tumors had two distinct mutations and two harbored SMARCB1 deletion. Other mutations were nonsense or frame-shifts. The detection sensitivity of the HRM screening method was influenced by both sequence context and specific nucleotide change and varied from 1: 4 to 1:1000 (variant to wild-type DNA). A novel method involving digital HRM, followed by re-sequencing, was used to confirm mutations in tumor specimens containing associated normal tissue. Conclusions : This is the first report describing SMARCB1 mutation screening using HRM. HRM is a rapid, sensitive and inexpensive screening technology that is likely to be widely adopted in diagnostic laboratories to facilitate whole gene mutation screening

    Colouration in amphibians as a reflection of nutritional status : the case of tree frogs in Costa Rica

    Get PDF
    Colouration has been considered a cue for mating success in many species; ornaments in males often are related to carotenoid mobilization towards feathers and/or skin and can signal general health and nutrition status. However, there are several factors that can also link with status, such as physiological blood parameters and body condition, but there is not substantial evidence which supports the existence of these relationships and interactions in anurans. This study evaluated how body score and blood values interact with colouration in free-range Agalychnis callidryas and Agalychnis annae males. We found significant associations between body condition and plasmatic proteins and haematocrit, as well as between body condition and colour values from the chromaticity diagram. We also demonstrated that there is a significant relation between the glucose and plasmatic protein values that were reflected in the ventral colours of the animals, and haematocrit inversely affected most of those colour values. Significant differences were found between species as well as between populations of A. callidryas, suggesting that despite colour variation, there are also biochemical differences within animals from the same species located in different regions. These data provide information on underlying factors for colouration of male tree frogs in nature, provide insights about the dynamics of several nutrients in the amphibian model and how this could affect the reproductive output of the animals

    You turn me cold: evidence for temperature contagion

    Get PDF
    Introduction During social interactions, our own physiological responses influence those of others. Synchronization of physiological (and behavioural) responses can facilitate emotional understanding and group coherence through inter-subjectivity. Here we investigate if observing cues indicating a change in another's body temperature results in a corresponding temperature change in the observer. Methods Thirty-six healthy participants (age; 22.9±3.1 yrs) each observed, then rated, eight purpose-made videos (3 min duration) that depicted actors with either their right or left hand in visibly warm (warm videos) or cold water (cold videos). Four control videos with the actors' hand in front of the water were also shown. Temperature of participant observers' right and left hands was concurrently measured using a thermistor within a Wheatstone bridge with a theoretical temperature sensitivity of <0.0001°C. Temperature data were analysed in a repeated measures ANOVA (temperature × actor's hand × observer's hand). Results Participants rated the videos showing hands immersed in cold water as being significantly cooler than hands immersed in warm water, F(1,34) = 256.67, p0.1). There was however no evidence of left-right mirroring of these temperature effects p>0.1). Sensitivity to temperature contagion was also predicted by inter-individual differences in self-report empathy. Conclusions We illustrate physiological contagion of temperature in healthy individuals, suggesting that empathetic understanding for primary low-level physiological challenges (as well as more complex emotions) are grounded in somatic simulation

    Testing foundations of quantum mechanics with photons

    Full text link
    The foundational ideas of quantum mechanics continue to give rise to counterintuitive theories and physical effects that are in conflict with a classical description of Nature. Experiments with light at the single photon level have historically been at the forefront of tests of fundamental quantum theory and new developments in photonics engineering continue to enable new experiments. Here we review recent photonic experiments to test two foundational themes in quantum mechanics: wave-particle duality, central to recent complementarity and delayed-choice experiments; and Bell nonlocality where recent theoretical and technological advances have allowed all controversial loopholes to be separately addressed in different photonics experiments.Comment: 10 pages, 5 figures, published as a Nature Physics Insight review articl
    corecore