1,257 research outputs found

    Tunneling in graphene-topological insulator hybrid devices

    Get PDF
    Hybrid graphene-topological insulator (TI) devices were fabricated using a mechanical transfer method and studied via electronic transport. Devices consisting of bilayer graphene (BLG) under the TI Bi2_2Se3_3 exhibit differential conductance characteristics which appear to be dominated by tunneling, roughly reproducing the Bi2_2Se3_3 density of states. Similar results were obtained for BLG on top of Bi2_2Se3_3, with 10-fold greater conductance consistent with a larger contact area due to better surface conformity. The devices further show evidence of inelastic phonon-assisted tunneling processes involving both Bi2_2Se3_3 and graphene phonons. These processes favor phonons which compensate for momentum mismatch between the TI Γ\Gamma and graphene K,KK, K' points. Finally, the utility of these tunnel junctions is demonstrated on a density-tunable BLG device, where the charge-neutrality point is traced along the energy-density trajectory. This trajectory is used as a measure of the ground-state density of states

    On the estimation of time dependent lift of a European Starling during flapping

    Get PDF
    We study the role of unsteady lift in the context of flapping wings in birds' flight. Both aerodynamicists and biologists attempt to address this subject, yet it seems that the contribution of the unsteady lift still holds many open questions. The current study deals with the estimation of unsteady aerodynamic forces on a freely flying bird through analysis of wingbeat kinematics and near wake flow measurements using time resolved particle image velocimetry. The aerodynamic forces are obtained through unsteady thin airfoil theory and lift calculation using the momentum equation for viscous flows. The unsteady lift is comprised of circulatory and non-circulatory components. Both are presented over wingbeat cycles. Using long sampling data, several wingbeat cycles have been analyzed in order to cover the downstroke and upstroke phases. It appears that the lift varies over the wingbeat cycle emphasizing its contribution to the total lift and its role in power estimations. It is suggested that the circulatory lift component cannot assumed to be negligible and should be considered when estimating lift or power of birds in flapping motion

    An efficient CDMA decoder for correlated information sources

    Full text link
    We consider the detection of correlated information sources in the ubiquitous Code-Division Multiple-Access (CDMA) scheme. We propose a message-passing based scheme for detecting correlated sources directly, with no need for source coding. The detection is done simultaneously over a block of transmitted binary symbols (word). Simulation results are provided demonstrating a substantial improvement in bit-error-rate in comparison with the unmodified detector and the alternative of source compression. The robustness of the error-performance improvement is shown under practical model settings, including wrong estimation of the generating Markov transition matrix and finite-length spreading codes.Comment: 11 page

    Gender, war and militarism: making and questioning the links

    Get PDF
    The gender dynamics of militarism have traditionally been seen as straightforward, given the cultural mythologies of warfare and the disciplining of ‘masculinity’ that occurs in the training and use of men's capacity for violence in the armed services. However, women's relation to both war and peace has been varied and complex. It is women who have often been most prominent in working for peace, although there are no necessary links between women and opposition to militarism. In addition, more women than ever are serving in many of today's armies, with feminists rather uncertain on how to relate to this phenomenon. In this article, I explore some of the complexities of applying gender analyses to militarism and peace work in sites of conflict today, looking most closely at the Israeli feminist group, New Profile, and their insistence upon the costs of the militarized nature of Israeli society. They expose the very permeable boundaries between the military and civil society, as violence seeps into the fears and practices of everyday life in Israel. I place their work in the context of broader feminist analysis offered by researchers such as Cynthia Enloe and Cynthia Cockburn, who have for decades been writing about the ‘masculinist’ postures and practices of warfare, as well as the situation of women caught up in them. Finally, I suggest that rethinking the gendered nature of warfare must also encompass the costs of war to men, whose fundamental vulnerability to psychological abuse and physical injury is often downplayed, whether in mainstream accounts of warfare or in more specific gender analysis. Feminists need to pay careful attention to masculinity and its fragmentations in addressing the topic of gender, war and militarism

    RGS2 expression predicts amyloid-β sensitivity, MCI and Alzheimer's disease: genome-wide transcriptomic profiling and bioinformatics data mining

    Get PDF
    Alzheimer's disease (AD) is the most frequent cause of dementia. Misfolded protein pathological hallmarks of AD are brain deposits of amyloid-β (Aβ) plaques and phosphorylated tau neurofibrillary tangles. However, doubts about the role of Aβ in AD pathology have been raised as Aβ is a common component of extracellular brain deposits found, also by in vivo imaging, in non-demented aged individuals. It has been suggested that some individuals are more prone to Aβ neurotoxicity and hence more likely to develop AD when aging brains start accumulating Aβ plaques. Here, we applied genome-wide transcriptomic profiling of lymphoblastoid cells lines (LCLs) from healthy individuals and AD patients for identifying genes that predict sensitivity to Aβ. Real-time PCR validation identified 3.78-fold lower expression of RGS2 (regulator of G-protein signaling 2; P=0.0085) in LCLs from healthy individuals exhibiting high vs low Aβ sensitivity. Furthermore, RGS2 showed 3.3-fold lower expression (P=0.0008) in AD LCLs compared with controls. Notably, RGS2 expression in AD LCLs correlated with the patients' cognitive function. Lower RGS2 expression levels were also discovered in published expression data sets from postmortem AD brain tissues as well as in mild cognitive impairment and AD blood samples compared with controls. In conclusion, Aβ sensitivity phenotyping followed by transcriptomic profiling and published patient data mining identified reduced peripheral and brain expression levels of RGS2, a key regulator of G-protein-coupled receptor signaling and neuronal plasticity. RGS2 is suggested as a novel AD biomarker (alongside other genes) toward early AD detection and future disease modifying therapeutics

    Paradoxical augmented relapse in alcohol-dependent rats during deep-brain stimulation in the nucleus accumbens

    Get PDF
    Case reports indicate that deep-brain stimulation in the nucleus accumbens may be beneficial to alcohol-dependent patients. The lack of clinical trials and our limited knowledge of deep-brain stimulation call for translational experiments to validate these reports. To mimic the human situation, we used a chronic-continuous brain-stimulation paradigm targeting the nucleus accumbens and other brain sites in alcohol-dependent rats. To determine the network effects of deep-brain stimulation in alcohol-dependent rats, we combined electrical stimulation of the nucleus accumbens with functional magnetic resonance imaging (fMRI), and studied neurotransmitter levels in nucleus accumbens-stimulated versus sham-stimulated rats. Surprisingly, we report here that electrical stimulation of the nucleus accumbens led to augmented relapse behavior in alcohol-dependent rats. Our associated fMRI data revealed some activated areas, including the medial prefrontal cortex and caudate putamen. However, when we applied stimulation to these areas, relapse behavior was not affected, confirming that the nucleus accumbens is critical for generating this paradoxical effect. Neurochemical analysis of the major activated brain sites of the network revealed that the effect of stimulation may depend on accumbal dopamine levels. This was supported by the finding that brain- stimulation-treated rats exhibited augmented alcohol-induced dopamine release compared with sham-stimulated animals. Our data suggest that deep-brain stimulation in the nucleus accumbens enhances alcohol-liking probably via augmented dopamine release and can thereby promote relapse
    corecore