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RGS2 expression predicts amyloid-β sensitivity, MCI and
Alzheimer’s disease: genome-wide transcriptomic profiling
and bioinformatics data mining
A Hadar1, E Milanesi1, A Squassina2, P Niola2, C Chillotti3, M Pasmanik-Chor4, O Yaron5, P Martásek6, M Rehavi7, D Weissglas-Volkov8,
N Shomron8,9, I Gozes1,9 and D Gurwitz1,9

Alzheimer's disease (AD) is the most frequent cause of dementia. Misfolded protein pathological hallmarks of AD are brain deposits
of amyloid-β (Aβ) plaques and phosphorylated tau neurofibrillary tangles. However, doubts about the role of Aβ in AD pathology
have been raised as Aβ is a common component of extracellular brain deposits found, also by in vivo imaging, in non-demented
aged individuals. It has been suggested that some individuals are more prone to Aβ neurotoxicity and hence more likely to develop
AD when aging brains start accumulating Aβ plaques. Here, we applied genome-wide transcriptomic profiling of lymphoblastoid
cells lines (LCLs) from healthy individuals and AD patients for identifying genes that predict sensitivity to Aβ. Real-time PCR
validation identified 3.78-fold lower expression of RGS2 (regulator of G-protein signaling 2; P= 0.0085) in LCLs from healthy
individuals exhibiting high vs low Aβ sensitivity. Furthermore, RGS2 showed 3.3-fold lower expression (P= 0.0008) in AD LCLs
compared with controls. Notably, RGS2 expression in AD LCLs correlated with the patients’ cognitive function. Lower RGS2
expression levels were also discovered in published expression data sets from postmortem AD brain tissues as well as in mild
cognitive impairment and AD blood samples compared with controls. In conclusion, Aβ sensitivity phenotyping followed by
transcriptomic profiling and published patient data mining identified reduced peripheral and brain expression levels of RGS2, a key
regulator of G-protein-coupled receptor signaling and neuronal plasticity. RGS2 is suggested as a novel AD biomarker (alongside
other genes) toward early AD detection and future disease modifying therapeutics.
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INTRODUCTION
Alzheimer's disease (AD), a progressive neurodegenerative
disorder, is the most frequent cause of dementia. Old age is a
major AD risk factor: the annual AD incidence increases from 1%
between ages of 60 and 70 years to 6–8% at the age of 85 or
older.1,2 AD is characterized by misfolded protein pathological
brain hallmarks: extracellular deposits of amyloid-β (Aβ) plaques
and accumulation of phosphorylated tau neurofibrillary tangles.
The Aβ1–42 peptide aggregates are predominant in AD brain
plaques and considered the most neurotoxic Aβ form.3–7

However, there are individuals who exhibit Aβ plaques in the
absence of dementia symptoms.1,8–10 Mild cognitive impairment
(MCI) is a state when there is mild loss of memory, considered
normal for old age. Fifty percent of MCI patients will progress to
AD over 4 years.1

Efforts have been made for identifying early AD biomarkers that
may detect high-risk individuals so that they are prioritized for
disease-modifying drugs that are being developed.11,12 Imaging
techniques based on in vivo measurements of brain Aβ have been
disappointing,13 and indeed one of the biggest mysteries in AD

pathophysiology is that some aged individuals show, upon brain
imaging, large quantities of brain Aβ deposits without showing
clinical AD signs and while maintaining good cognitive skills into
their 80s.13 This has recently led to strong doubts about the
validity of the ‘amyloid cascade hypothesis’ that assumes a central
role for Aβ in AD pathology.14,15 It has been proposed that some
individuals could be more prone to Aβ-mediated neurotoxicity,
while Aβ brain deposition per se may represent part of the normal
brain aging process.13,16

To further understand the pathophysiology of AD toward potential
prevention and disease-modifying treatments, disease biomarkers
may prove beneficial. One approach is the candidate gene approach,
which we (IG) recently took, finding correlation between serum
activity-dependent neuroprotective protein (ADNP) and intelligence
test scores of elderly individuals, coupled with lower ADNP
messenger RNA (mRNA) in blood cells correlated with increased
Aβ deposits and significant deregulation of activity-dependent
neuroprotective protein mRNA expression in AD lymphocytes.17

Another approach entails proteomic screening.18,19 In our present
work, we applied a third approach, namely, genome-wide
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transcriptomics of human lymphoblastoid cell lines (LCLs) from
unrelated healthy individuals and AD patients for searching gene
expression levels that are correlated with in vitro Aβ sensitivity. We
report several genes, most notably RGS2 (regulator of G-protein
signaling 2) and DLGAP1 (disks, large (Drosophila) homolog-
associated protein 1) with low expression correlated with higher
Aβ sensitivity in LCLs from healthy individuals and lower
expression in LCLs from AD patients, as well as in postmortem
AD brain tissues and both AD and MCI peripheral blood.

MATERIALS AND METHODS
Human LCLs and materials
LCLs from adult donors were obtained from the National Laboratory for
the Genetics of Israeli Populations (NLGIP; http://nlgip.tau.ac.il) at Tel Aviv
University, Israel (23 LCLs of healthy controls) and from The University of
Cagliari, Italy (28 AD patients and 16 healthy controls). Detailed
demographic data and cognitive scores of the AD patients and controls
are presented in Supplementary Table 1. The cell lines were generated
from peripheral blood lymphocytes donated by consenting patients and
healthy controls. The cells were maintained in optimal growth conditions
as described.20 Tissue-culture reagents were purchased from Biological
Industries (Beit-Haemek, Israel). Amyloid-β1–42 (Aβ1–42) peptide was
purchased from Genemed Synthesis (San Antonio, TX, USA). Aβ1–42
peptide was dissolved in sterile tissue-culture grade water (1 mg ml− 1)
and stored (as 100 μl aliquots) at − 20 °C. Before the experiments, an
aliquot of Aβ1–42 in water was preincubated at 37 °C for 3 days21,22 for
assuring the generation of Aβ fibrils.23,24

Cell proliferation assay
Growth inhibition of LCLs was examined by exposure to 8 μM Aβ1–42 fibrils
for 3 days (unless otherwise indicated). LCLs were first washed in
phosphate-buffered saline and suspended with serum-free RPMI medium
containing the commercial serum supplement 4% BIOGRO-2 (Biological
Industries). This BIOGRO-2 concentration was optimal for long-term serum-
free growth of LCLs.25 The serum-free conditions are essential for
observing Aβ1–42 mediated growth inhibition. The cells were counted
and diluted in the same media to a concentration of 250 000 cells ml− 1,
followed by plating 100 μl per well in 96-well plates (Corning, Corning, NY,
USA). The LCLs from healthy controls or AD patients were similarly assayed.
The XTT cell proliferation assay (Biological Industries) was carried out after
3 days, as earlier described.26 Each cell line was tested for the effect of
Aβ1–42 in three independent experiments.

RNA extraction
RNA extraction was performed from cells incubated in upright T-25 flasks
under optimal growth conditions in serum-containing media at a cell
density of 0.5 × 106–1× 106 cells ml− 1 as previously described.20 RNA was
quantified using a NanoDrop spectrophotometer (NanoDrop, Wilmington,
DE, USA), with both 260/280 nm and 260/230 nm parameters 42.0. RNA
quality was confirmed using 1% agarose gels.

Gene expression microarrays
The RNA samples (N= 16) from optimally growing LCLs, exhibiting high or
low sensitivities to Aβ (8 each) were chosen for genome-wide expression
profiling. The RNA samples (250 ng) were prepared and hybridized to
Affymetrix Human Gene 2.1 ST arrays as described in the Affymetrix
website. Microarray analysis was performed on CEL files using Partek
Genomics Suite (Partek, Chesterfield, MO, USA). Genes of interest that were
differentially expressed in the two phenotypic groups of the LCLs (fold-
difference cutoff 41.5 and Po0.05) were obtained.

Real-time PCR
Real-time PCR was performed to validate the microarray expression
patterns of selected genes using the same RNA samples used for the
microarray experiment. The complementary DNA (cDNA) samples were
prepared from 1 μg RNA samples using High Capacity cDNA Reverse
Transcription kit (Applied Biosystems, Waltham, MA, USA) containing 10 ×
RT buffer, 10 × RT random primers, 25 × dNTP mix, RNAse inhibitor and
MultiScribe Reverse transcriptase. Reverse transcription was performed

using a thermal cycler over three steps (25 °C for 10 min, followed by 37 °C
for 120 min and 85 °C for 5 min). Real-time PCR experiments were done
with 20 μl mixtures containing 20 ng of cDNA, Absolute Blue qPCR ROX
mix (Thermo Scientific, Waltham, MA, USA) and Primers (TaqMan Gene
Expression Assay; Applied Biosystems). GUSB (glucuronidase, beta) was
used as reference gene as recommended for transcriptomic analysis of
LCLs.27 TaqMan Gene Expression Assay IDs are listed below:

Gene symbol Assay ID

BCHE Hs00992319_m1
DLGAP1 Hs00191052_m1
DNASE1L3 Hs00172840_m1
FARP1 Hs00195010_m1
GUSB Hs00939627_m1
INPP4B Hs00182580_m1
PAG1 Hs00179693_m1
RGS2 Hs01009070_g1
SARM1 Hs00248344_m1
SIRT1 Hs01009006_m1

PCR reactions were performed using ABI Step One (Applied Biosystems)
and the cycle protocol was as follows: 50 °C for 2 min, 95 °C for 15 min,
followed by 40 cycles of 95 °C for 15 s and 60 °C for 1 min. Comparative
critical threshold (Ct) values were used for analyzing relative gene
expression in selected sample groups according to 2−ΔCт (ΔCт=Ct target
Gene—Ct reference gene). For SNORD116-13 and for the reference gene
GUSB, real-time PCR was done using the SYBR Green (Kapa SYBR,
Wilmington, MA, USA) technique. Primers (shown below) were purchased
from IDT (Coralville, IA, USA).

Transcript Forward Reverse

GUSB CTGCTGGCTACTACTTGAAGATG GAGTTGCTCACAAAGGTCAC
SNORD116-13 TGGACCAATGATGACTTCCATAC CAACTAAGATGATAGTACAG

AGTTCCC

GEO data mining
The NCBI Gene Expression Omnibus (GEO) was searched for expression
data sets of human AD and MCI blood and postmortem brain tissues. Data
sets GSE5281 (ref. 28) from six postmortem brain regions (87 AD and 74
controls), and GSE63060 (ref. 29) from whole blood (145 AD, 80 MCI and
104 controls) were identified as the largest cohorts. GEO files were
downloaded using the R package GEO. The five selected candidate genes
were tested for differential expression between AD, MCI and controls using
the R package Limma.

RESULTS
A flowchart outlining our study design is presented in Figure 1a.
As a preparatory step for genome-wide transcriptomic search for
genes implicated in Aβ1–42 sensitivity of cells from unrelated
individuals, we initially screened human LCLs from healthy female
donors for growth inhibition following incubation with several
concentrations of Aβ1–42 (range 1 to 20 μM) for 24 or 72 h in
serum-free medium (see the Materials and methods' section). This
first phase included exclusively female LCLs, as sex was shown to
affect gene expression by human LCLs.30 Confirming previous
reports, Aβ1–42 did not grossly affect cell growth or survival in
serum-containing media22 (Figure 1b). Thus, the concentration of
8 μM Aβ1–42 and the incubation period of 72 h in serum-free
medium were selected for phenotyping Aβ-mediated growth
inhibition in a panel of LCLs from 23 unrelated healthy female
donors using XTT cell proliferation assay (see the 'Materials and
methods' section). Three repeat experiments were performed
(each in triplicate) for each cell line. Eight LCLs exhibiting the
highest Aβ1–42 sensitivity (35 ± 3% growth inhibition) and eight
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LCLs exhibiting the lowest Aβ1–42 sensitivity (21 ± 4% growth
inhibition; Figure 1c) were selected for comparative genome-wide
expression profiling (see the 'Materials and methods' section; step
#1, Figure 1a). Average donor ages were similar for the high and
low Aβ1–42 sensitivity groups (38 ± 8 and 58 ± 10 years, respec-
tively; P= 0.142).

Genome-wide microarray expression and RT-PCR validation
The RNA samples were prepared from the 16 selected healthy
female LCLs growing under optimal conditions in serum-
containing medium (see the 'Materials and methods' section).
Genome-wide expression profiles were compared in the healthy
donor LCLs exhibiting high or low Aβ1–42 sensitivity (n= 8 per
group) using Affymetrix Human Gene 2.1 ST arrays (See the
'Materials and methods' section; step #2, Figure 1a). Table 1 shows
27 transcripts found to exhibit 41.5 fold difference (Po0.05) in
basal expression levels comparing healthy female LCLs exhibiting
high vs low Aβ1–42 sensitivity.
The same RNA samples from the LCLs exhibiting high or low

Aβ1–42 sensitivity (eight in each group) were converted to cDNA.
Eight genes from the 27 found as differentially expressed were
selected for validation by real-time PCR based on their high

expression in human brain tissues as well as their relevance for
neuronal function. The expression levels of BCHE, DLGAP1, INPP4B,
DNASE1L3, RGS2 and PAG1 (Table 1) are presented as scatter plots
(Figures 2a–f). The expression level differences between the two
Aβ1–42 sensitivity groups of control LCLs are clearly evident.

Expression levels of candidate genes in AD vs healthy control LCLs
Next, the expression levels of selected genes found to be
differentially expressed in healthy control LCLs with high vs low
Aβ1–42 sensitivity were determined by real-time PCR in 28 AD and
32 healthy control LCLs growing under optimal conditions (see
the 'Materials and methods' section). The expression levels of two
additional genes, SIRT1 and SARM1, albeit not found in our
genome-wide transcriptomic experiment, were also analyzed in
the same AD and healthy control LCLs, as both have been
implicated in AD,31–35 and SIRT1 expression was reduced in
postmortem AD parietal cortex.36 The RNA samples were
extracted and converted to cDNA for determining the expression
levels of selected genes by real-time PCR (Supplementary Table 2).
The expression levels of RGS2, DLGAP1, BCHE, SNORD116-13,
DNASE1L3, SIRT1 and SARM1 are also presented as scatter plots
(Figures 3a–g). No correlations were observed between expression
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Figure 1. (a) A flowchart presenting the study design. Aβ1–42 sensitivity determined in lymphoblastoid cells lines (LCLs) of healthy female
donors. (b) Lymphoblastoid cells from a healthy female donor were plated in 96-well plates (25 000 cells per well) and incubated with the
indicated concentrations of Aβ1–42 for 24 or 72 h followed by determination of viable cell numbers with the XTT color reagent (see the
'Materials and methods' section). Data are from a representative experiment, with similar observations obtained in a repeat experiment. (c)
Aβ1–42 sensitivity (8 μM, 72 h) is shown for two LCL groups (eight unrelated donors each) from healthy female donors selected for the
microarray experiment based on their different Aβ1–42 sensitivity phenotypes. Average growth inhibition values were 35± 4 and 21± 3 in the
high- and low-sensitivity groups, respectively (P= 0.001; Mann–Whitney U-test). See the 'Materials and methods' section for experimental
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Examination.
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levels of RGS2, DLGAP1 or BCHE and between control or AD patient
ages, or between ages and growth inhibition by 8 μM Aβ1–42 in
individual LCLs (Supplementary Figure 1). However, a correlation
was observed between the expression levels of RGS2 and growth
inhibition by Aβ1–42 in 26 individual healthy control LCLs
(R=− 0.565; P= 0.003) but not in 32 AD LCLs (Supplementary
Figure 2). In addition, a correlation (R= 0.688; P= 0.000000006)
was found between the expression levels of DLGAP1 and BCHE in
individual LCLs from pooled 55 control and AD LCLs
(Supplementary Figure 3). Correlations were also found between
the expression levels of SIRT1 and the expression of RGS2 or
SARM1 in individual LCLs (Supplementary Figure 4).

RGS2 expression levels in LCLs correlate with dementia scores
The expression levels of RGS2 in LCLs from AD patients for whom
cognitive scores were available (n= 23) were examined for correla-
tions with these scores (see Supplementary Table 1). A significant
correlation (R=− 0.555; P= 0.006) was observed between the
MMSE (Mini Mental State Examination) scores of AD patients and
the RGS2 expression levels in their LCLs (Figure 4a). Moreover, a
significant correlation (R= 0.560; P= 0.006) was observed between
RGS2 expression levels and ADAS (Alzheimer’s Disease Assessment
Scale) scores (Figure 4b).

GEO data mining indicates reduced RGS2 expression in AD brain
and blood
Data mining was performed for GEO data sets GSE5281 (ref. 28)
from six postmortem brain regions (87 AD and 74 controls) and

GSE63060 (ref. 29) from whole blood (145 AD, 80 MCI and 104
controls)—two data sets identified as the largest AD cohorts
deposited on the NCBI Gene Expression Omnibus (GEO; see the
'Materials and methods' section). Both RGS2 and DLGAP1 exhibited
significantly lower expression in postmortem AD brain tissues
compared with matched controls of data set GSE5281.28 More-
over, RGS2 also exhibited lower expression in whole blood data set
GSE63060 (ref. 29) for both AD and MCI patients compared with
healthy controls (FD =− 1.2 and − 1.3; P= 0.000072 and 0.0000012,
respectively; Figure 4c), suggesting that its low blood expression
may serve as a peripheral MCI and AD biomarker.

DISCUSSION
Research on risk genes for late-onset AD (LOAD), the most
common cause of dementia in the elderly, has been largely
focused on the role of the ApoE4 genotype, the most notable
genetic variation contributing to AD risk, whereas relatively few
other genetic clues for this disease have been established. Yet,
only about half of LOAD patients are ApoE4 carriers,37 suggesting
that further genomic or epigenomic variations contribute to this
neurodegenerative disease. These may include DNA sequence
variations, gene or ncRNA transcripts, or epigenomic modifications
that affect the sensitivity of brain cells to Aβ and/or tau. Our
present study was aimed at discovering transcriptomic correlates
for Aβ sensitivity as first step toward identifying LOAD risk genes.
The failure of genome-wide association studies to find major

LOAD risk alleles besides ApoE4 suggests that transcriptomic and
proteomic studies should be performed as, unlike genome-wide
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(b) DLGAP1; (c) BCHE; (d) DNASE1L3; (e) INPP4B and (f) PAG1. Note: SNORD116-13 and FARP1, two genes from the eight selected for real-time PCR
validation (from those depicted in bold font in Table 1) showed the expected trend, however, with P40.05 and their expression data are not
displayed.

RGS2 expression predicts amyloid-β sensitivity
A Hadar et al

4

Translational Psychiatry (2016), 1 – 11



association studies, transcriptomic and proteomic studies also
capture effects of microdeletions and individual epigenomic
variations. In the present study, we have applied a microarray-
based genome-wide transcriptomic approach, starting with LCLs
from unrelated individual female donors, for searching gene
expression variations that may correlate with LOAD risk due to
more pronounced individual Aβ toxicity, and thereby, presumably,
to LOAD. Notably, it has recently been demonstrated that LCLs
capture life-course environmental epigenomic signatures.38 This
genome-wide phase was followed by gene validation in a cohort
of 28 AD patient LCLs compared with 32 LCLS from non-
demented controls. We report 27 transcripts with expression levels
associated with Aβ sensitivity of control LCLs (Table 1). Four of
these genes, RGS2, DLGAP1, BCHE and SNORD116-13 exhibited
significantly lower expression in the AD LCL cohort compared with
healthy controls, whereas DNASE1L3 exhibited higher expression in
the latter (Figures 3a–e). Among these genes, only the expression
of RGS2 correlated with patient MMSE and ADAS cognitive scores
(Figures 4a and b). Both RGS2 and DLGAP1 exhibited, in addition,
lower expression in published gene expression data set (GSE5281;
ref. 28) of postmortem AD compared with control brain tissues,
and RGS2 exhibited lower expression also in a whole blood data
set (GSE63060; ref. 29) of AD and MCI patients compared with
control (Figures 4c–i). Below, we discuss the LOAD risk relevance
of these genes.

RGS2 expression
Our genome-wide transcriptomic profiling detected 2.1-fold
reduced RGS2 expression in a group of healthy donors LCLs
exhibiting high Aβ sensitivity (P= 0.035; Table 1). Next, we

observed a 3.3-fold reduced RGS2 expression in AD LCLs
compared with matched controls (P= 0.0008; Figure 3a). To our
knowledge, this is the first report on reduced RGS2 expression in
AD cells. RGS proteins, comprising a family with 20 members, have
key roles in synaptic signaling and neuronal plasticity: these proteins
function as negative regulators of G-protein-coupled receptors
(GPCR) signaling, acting as GTPase activating proteins for Gα
subunits, thereby accelerating the turnoff of GPCR signaling.39

RGS2 has widespread brain expression,40 and its altered expression
has been implicated in several neurodegenerative and psychiatric
diseases.41–47 Unlike other RGS family members, RGS2 is an
immediate early gene, rapidly upregulated in response to stimuli
evoking brain plasticity39 such as high frequency stimulation.48

Notably, RGS2 expression was induced in rat hippocampus 2 h
following acute electroconvulsive shock,47 and in human astro-
cytoma cells following heat shock or oxidative stress.49

RGS2 was identified as key regulator of LRRK2 (leucine-rich
repeat kinase 2; also known as PARK8). LRRK2 mutations cause
shortening of the dendritic tree and are among the primary
genetic causes of Parkinson’s disease.41,45 Reduced RGS2 expres-
sion was observed in the striata of LRRK2-mutated and sporadic
Parkinson’s disease patients.45 In addition, RGS2 rs4606 poly-
morphism is a risk allele for schizophrenia43 and is associated with
antipsychotic-induced parkinsonism.42 RGS2 has also been sug-
gested to be implicated in antioxidant defense.50

Decreased striatal RGS2 expression has been suggested to be
neuroprotective in Huntington's disease (HD).44 A similar com-
pensatory response may underlie the lower RGS2 expression
observed in our AD LCLs (Figure 3a) and in postmortem AD brain
tissues (Figures 4d–f). Notably, the decreased blood RGS2
expression is already apparent at the MCI stage (Figure 4c) and

Table 1. Genome-wide transcriptomic profiling comparing individual LCLs with high vs low Aβ1–42 sensitivities (eight LCLs in each group; Affymetrix
GeneChip Human Gene 2.1 ST arrays)

Gene/transcript Full name Fold difference (high vs low) P-value

DNASE1L3 Deoxyribonuclease I-like 3 − 2.40 0.003
ABHD6 Abhydrolase domain containing 6 − 1.62 0.006
MERTK c-mer proto-oncogene tyrosine kinase − 1.64 0.008
PEX5L Peroxisomal biogenesis factor 5-like − 1.54 0.010
FARP1 FERM, RhoGEF (ARHGEF) and pleckstrin domain protein 1 1.69 0.010
LOC728419 Ubiquitin carboxyl-terminal hydrolase 17-like − 1.63 0.012
OR5K4 Olfactory receptor, family 5, subfamily K, member 4 − 1.88 0.017
FAH Fumarylacetoacetate hydrolase 1.51 0.021
ZNF804A Zinc finger protein 804A − 1.77 0.023
TNFRSF9 Tumor necrosis factor receptor superfamily, member 9 − 1.81 0.027
RNU6-55 RNA, U6 small nuclear 55 − 1.64 0.029
OR5H14 Olfactory receptor, family 5, subfamily H, member 14 − 2.40 0.031
RGS2 Regulator of G-protein signaling 2, 24 kDa − 2.14 0.035
KDM5B Lysine (K)-specific demethylase 5B − 2.10 0.035
SNORD116-13 Small nucleolar RNA, C/D box 116-13 1.57 0.035
CCL28 Chemokine (C-C motif ) ligand 28 − 1.51 0.036
INPP4B Inositol polyphosphate-4-phosphatase, type II, 105 kDa − 2.28 0.038
PTPN14 Protein tyrosine phosphatase, non-receptor type 14 − 2.17 0.038
TRNAU2 Transfer RNA selenocysteine 2 1.64 0.038
SNORD45C Small nucleolar RNA, C/D box 45C 1.58 0.041
PHYHIPL Phytanoyl-CoA 2-hydroxylase interacting protein-like − 1.61 0.043
DLGAP1 Disks, large (Drosophila) homolog-associated protein 1 − 2.10 0.044
ANKRD20A11P Ankyrin repeat domain 20 family, member A11, pseudogene − 1.68 0.044
PAG1 Phosphoprotein associated with glycosphingolipid microdomain − 1.73 0.045
SNORD116-18 Small nucleolar RNA, C/D box 116-18 1.75 0.045
GLIPR2 GLI pathogenesis-related 2 − 1.53 0.046
BCHE Butyrylcholinesterase −1.82 0.049

Abbreviations: Aβ, amyloid-β; LCL, lymphoblastoid cells line. The 27 listed transcripts differed by 41.5-fold with Po0.05 in eight LCLs exhibiting high Aβ1–42
sensitivity compared with eight LCLs exhibiting low Aβ1–42 sensitivity (as shown in Figure 1c). Genes are arranged by increasing P-values. The expression
differences for eight selected genes (in bold font) were tested in the same RNA samples by real-time PCR experiments (Figures 2a–f) and further tested in
Alzheimer’s disease LCLs (Figures 3a–e; Supplementary Table 2).
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prevails in AD blood samples. This may partly explain our
observations that lower RGS2 expression levels were correlated
with better MMSE and ADAS scores (Figures 4a and b). Whatever
the explanation, our data suggest that RGS2 expression levels are
implicated in AD pathology, either as causative or as disease-
triggered protective mechanism, as has been suggested for its
reduced expression in HD brains.44

Genes coding for GPCRs comprise the largest family in the
human genome, with 791 different genes (~4% of the human
exome), half coding for olfactory receptors.51 The activity of the
olfactory receptors is tightly regulated by RGS family proteins,
including RGS2.52,53 Reduced olfactory sensing is a common
feature in AD, observed already in some MCI patients.54–56 It is
accompanied by reduced neuronal stem cell renewal in the
olfactory epithelium, a tissue of central origin,57 owing to impaired

neuronal stem cell migration and proliferation, possibly secondary
to amyloid-β accumulation.58 Thus, it is plausible that reduced
RGS2 expression in MCI and AD patients represents a compensa-
tory mechanism aimed at improving a deteriorating olfactory
capacity.
Dysregulation of acetylcholine receptors, in particular the M1

muscarinic receptor, has received considerable interest in AD
research, as this GPCR is implicated in memory consolidation59–61

and as acetylcholinesterase (AChE) inhibitors remain among first-
line AD therapeutics. Decreased levels M1 muscarinic receptors
have been demonstrated in several AD postmortem brain regions
including CA1, temporal cortex and occipital cortex.62–64 Yet, M1
muscarinic signaling capacity was shown to be preserved in AD
brain tissues.65 Notably, RGS2 has been shown to bind directly and
selectively to the M1 muscarinic acetylcholine receptor (via the
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Figure 3. Expression levels of RGS2, DLGAP1, BCHE, SNORD116-13, DNASE1L3, SIRT1 and SARM1 in lymphoblastoid cells lines (LCLs) of
Alzheimer's disease (AD) patients and healthy controls. The values were determined by real-time PCR; fold-difference (FD) values are shown
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receptor’s third intracellular loop) and modulate Gq/11alpha
signaling66 resulting in suppression of M1 muscarinic receptor-
mediated activation of KCNQ channels that in turn regulate
neuronal excitability.67 It is therefore plausible that preserved M1
G-protein coupling capacity persists in AD brain tissues in spite of
compromised acetylcholine levels in part owing to reduced RGS2

expression that allows enhanced M1 muscarinic receptor signal-
ing. This tentative scenario agrees with the above suggestion for a
compensatory neuroprotective role of reduced brain RGS2
expression, as also proposed for HD.44

Melatonin treatment has been suggested to ameliorate AD
pathology and cognitive decline in animal models.68–70 Notably,
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melatonin production in the rat pineal gland was reduced
following Rgs2 transfection.71 Lower RGS2 expression in AD LCLs,
blood and brain (Figure 3a, Figures 4c–f) may indicate enhanced
melatonin production. Moreover, melatonin treatment of multiple
sclerosis patients upregulated SIRT1 expression in their blood
cells72 and reduced sepsis-induced brain injury through upregula-
tion of Sirt1 and Bcl-2 in mice.73 Thus, lower RGS2 expression in AD
may allow higher pineal melatonin production and in turn
improve neuroprotection.
Last, RGS2 has been reported as the only RGS family member

that inhibits the mRNA translation into protein of eIF2Bϵ
(eukaryotic initiation factor 2B ϵ subunit),74 a protein crucial for
correct protein folding, a process dysfunctional in neurodegen-
erative disorders including HD, AD and prion diseases, and
mutations in which cause childhood ataxia.75 This novel role of
RGS2 supports its postulated defensive mechanism in both HD
and AD, whereby reduced RGS2 expression reflects an attempt to
protect cells from misfolded protein accumulation by enhancing
eIF2Bϵ translation.76

GPCRs are the largest gene family in the human genome (~800
members) and ~ 40% of current therapeutics are GPCR ligands.77

Our findings of the GPCR regulator RGS2 as deregulated in AD
LCLs (Figure 3a), and that its expression was correlated with AD
patients' MMSE and ADAS scores (Figures 4a and b), are intriguing.
Moreover, RGS2 was found to be downregulated in published GEO
data sets from postmortem AD brain tissues (Figures 4d–f), as well
as in both AD and MCI peripheral blood (Figure 4c). A scheme
summarizing tentative disease-protective and disease-promoting
events associated with reduced RGS2 expression is shown in
Figure 4j. These observations attest to the complexity of the
disease, with fundamental pathways led astray. It further high-
lights the need for innovative approaches to AD therapeutics.

DLGAP1 expression
DLGAP1 expression was 2.1-fold lower in a group of healthy
donors LCLs exhibiting high Aβ sensitivity (P= 0.044; Table 1). We
subsequently observed 2.8-fold reduced DLGAP1 expression in AD
LCLs compared with matched controls (P= 0.042; Figure 3b). The
proteins encoded by DLGAP1 (also known as GKAP) along with
DLC2 take part in neuronal N-methyl-D-aspartate (NMDA)-receptor-
associated scaffolding complex. NMDA glutamate receptors are
strongly implicated in neurodegenerative diseases,78 and com-
prise the drug target of memantine, the first non-cholinesterase
inhibitor FDA-approved AD drug.79 Interference of the DLGAP1–
DLC2 interaction inhibits NMDA receptor activity in dendritic
spines.80 In turn, synaptic activity-induced DLGAP1–DLC2 interac-
tion in dendritic spines stabilizes the scaffolding complex and
enhances the NMDA currents.81,82

Of note, the NMDA receptor GluN1 subunit was increased 6-fold
in postmortem AD frontal cortex compared with controls,83

supporting a key role for elevated NMDA receptor activity in
glutamate-mediated neurodegeneration.78 Moreover, Aβ was
shown to induce degradation of GKAP, the protein encoded by
DLGAP1.84 Further studies are needed for clarifying how the latter

observation is related to the reduced DLGAP1 expression observed
in our AD LCLs (Figure 3b).
The reduced DLGAP1 expression in AD LCLs may represent,

similarly to our above suggestions for RGS2, a compensatory
mechanism for protecting against NMDA-mediated neuronal cell
death. This tentative explanation needs further exploration, as the
function of NMDA receptors in immune cells, although apparent,
remains little studied.85

BCHE expression
The expression of BCHE, coding for BChE, was 1.82-fold lower in
the group of high Aβ sensitivity LCLs (Table 1). We subsequently
observed 6.1-fold lower BCHE expression in AD LCLs compared
with healthy controls (P= 0.04; Figure 3c). BChE, along with AChE,
comprise the targets of the first-generation AD drug rivastigmine
and the (discontinued) first AD drug Tacrine. BChE was shown to
prevent Aβ fibril formation,86 an observation that may explain the
increased AD risk in carriers of BChE K, a variant with reduced
enzymatic activity87 and found by a recent meta-analysis to pose
increased AD risk.88 In support of our observations, significantly
lower plasma BChE activity levels were reported in AD plasma
samples compared with controls, and were associated with faster
disease progression.89 Thus, our findings on reduced BCHE
expression in control LCLs showing higher Aβ sensitivity
(Figure 2c), as well as in AD LCLs (Figure 3c) seem to fit a putative
protective role of BChE against Aβ toxicity, while questioning the
benefit of mixed AChE/BChE inhibitors (such as rivastigmine) as
AD therapeutics. Perhaps the benefit from inhibiting acetylcholine
hydrolysis by AChE outweighs the disadvantage of BChE inhibition
by such drugs. The impact of reduced BCHE expression on AD risk
and pathology as well as potential clinical implications for
choosing selective AChE inhibitors vs mixed AChE/BChE inhibitors
in AD treatment should be further explored.

SNORD116 transcripts
Two SNORD116 transcripts, SNORD116-13 and SNORD116-18,
exhibited higher expression in the LCL group having higher Aβ
sensitivity in the genome-wide expression profiling microarrays.
The SNORD116-13 microarray data were validated by real-time
PCR, albeit only with a trend for significance (P= 0.07), indicating
1.70-fold higher expression levels in LCLs exhibiting high Aβ
sensitivity. The same SNORD116-13 transcript showed 1.48-fold
lower expression in AD LCLs vs healthy controls (P= 0.0079;
Figure 3d).
SNORD116 deletions cause Prader–Willi syndrome, a neurode-

velopmental genetic disorder manifested in cognitive and
behavioral deficits.90 SNORD transcripts are noncoding nucleolar
RNAs acting similarly to transcription factors. SNORD116 was
shown to be developmentally regulated in maturing neurons91

and its overexpression affects the expression of over 200 genes.92

SNORD116 transfection increased the expression of MAP2 (micro-
tubule-associated protein 2, an axonal marker) and TUBB4 (tubulin
beta-4 A chain), both important for microtubule assembly.
The expression of both MAP2 and TUBB4 were decreased in

Figure 4. (a and b) Correlations between the expression levels of RGS2 in lymphoblastoid cells lines (LCLs) from 23 individual Alzheimer's
disease (AD) patients (Mini Mental State Examination (MMSE) o24) and their cognitive test scores as determined at the time of blood
withdrawal for LCL generation. Note that higher MMSE scores reflect better cognition, whereas it is the opposite for Alzheimer’s Disease
Assessment Scale (ADAS) scores (a) MMSE: a negative correlation of R=− 0.555 (P= 0.006) was observed (b) ADAS: a positive correlation of
R= 0.560 (P= 0.006) was observed. Note: MMSEo24 scores were determined for 23 out of 28 AD patients (Supplementary Table 2). (c)
Expression levels of RGS2 in 80 mild cognitive impairment (MCI), 104 healthy controls and 145 AD patients from whole blood (Data set
GSE63060) (d–i) Expression levels of RGS2 and DLGAP1 in postmortem brains (Data set GSE5281) from AD patients and age-matched non-
demented controls. (d and g) Posterior cingulate: AD (N= 9) and control (N= 13). (e and h) Superior frontal gyrus: AD (N= 23) and control
(N= 11). (f and i) Medial temporal gyrus: AD (N= 16) and control (N= 12). (j) A scheme summarizing tentative disease-protective and disease-
promoting events associated with reduced RGS2 expression in AD brain tissues. Squares on the left summarize our observations; adjacent
squares summarize tentative related consquences (see the 'Discussion' section).
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postmortem posterior hypothalamus from Prader–Willi syndrome.92

Our findings on decreased SNORD116-13 expression in AD LCLs
compared with controls, and increased expression in LCLs exhibit-
ing higher Aβ sensitivity, suggest that some genes regulated by
SNORD116 may be implicated in neurodegeneration, possibly by
modifying cellular responses to chronic Aβ exposure.

Strengths and constraints
Our observations suggest that the protein products of the genes
discussed above may be implicated in the pathophysiology of
sporadic AD. The correlations we have observed between their
lower expression levels and higher Aβ sensitivity in healthy female
donors LCLs suggest that their low expression may be among the
causes rather than consequences for sporadic AD. Yet, considering
reports of a compensatory neuroprotective role for reduced RGS2
levels in HD, it may well be that the reduced RGS2 expression
levels that we observed in AD LCLs and postmortem brain reflect a
similar compensatory mechanism in AD.
A key limitation of our study is that transcriptomic profiling

assays were conducted in blood-derived cells, namely LCLs, rather
than in neurons. Nonetheless, neuroimmune interactions have a
key role in neurodegenerative diseases including AD,93–95 and the
recent demonstration of a functional meningeal lymphatic system
that drains cerebrospinal fluid to deep cervical lymph nodes96

emphasizes the relevance of neuroimmune interactions in
neurodegenerative diseases. In favor of applying LCLs transcrip-
tomic profiling for AD research are our observations on reduced
SIRT1 and SARM1 expression in AD personal LCLs (Figures 3f–g),
moreover, SIRT1 expression was reduced in AD brains.97

Our hypothesis-free findings on lower expression of RGS2 and
DLGAP1 in AD LCLs are supported by analysis of published gene
expression data sets of postmortem AD brain tissues. RGS2
expression levels were also lower in AD and MCI patients’ blood
(Figures 4c–i). Personal LCLs may thus serve, in the absence of
neuronal tissues, as surrogate for brain cells, and may point to
altered transcriptomic profiles that could be implicated in AD
pathology.

CONCLUSIONS
Our findings, based on a genome-wide transcriptomic search for
genes implicated in Aβ sensitivity, show lower expression levels of
several key regulatory genes. In particular, lower expression levels
of RGS2, DLGAP1 and BCHE are implicated in the higher Aβ
sensitivity of LCLs from some individuals. Furthermore, lower
expression levels of RGS2 and DLGAP1 were also found in LCLs of
AD patients compared with non-demented control donors, as well
as in two published gene expression data sets (GSE5281 and
GSE63060) of postmortem AD brain tissues and in MCI and AD
patients’ blood. Taken together, we suggest the involvement of
lower expression of RGS2 and DLGAP1 in AD pathophysiology. In
particular, the potential diagnostic value of blood RGS2 expression
levels should be explored, as this reduction is already noticeable in
blood samples of MCI patients. Further studies are required for
elaborating the roles of these genes and their protein products, till
now not implicated in AD, in the disease pathophysiology, as well
as the potential of their expression levels as early AD biomarkers,
and tentative utility as AD drug targets.
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